Skip to main content
Log in

Flavonoids differentially modulate nitric oxide production pathways in lipopolysaccharide-activated RAW264.7 cells

  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Naturally occurring flavonoids are known to modulate various inflammatory and immune processes. Based on structural property, in this study, molecular mechanism of flavonoids in modulating nitric oxide (NO) production and its signaling pathway were investigated using lipopolysaccharide (LPS)-activated RAW264.7 cells. Although flavonol-typed flavonoids (kaempferol and quercetin) more potently scavenged reactivity of nitric oxide (· NO) as well as peroxynitrite (ONOO) than isoflavones (genistein and genistin), kaempferol, quercetin and genistein showed a little difference in inhibition of both inducible NO synthase expression and NO production, with IC50 values of 13.9, 20.1 and 26.8 μM. However, there was a striking pattern related to structural feature in modulation of LPS-mediated signaling pathways. Thus, flavonols only inhibited transcription factor AP-1 activation, whereas isoflavones suppressed the DNA binding activation of NF-κB and C/EBPβ. Therefore, these data suggest that structural feature may be linked to decide drugs target molecule in LPS-mediated signaling pathways, rather than its potency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agullo, G., Gamet-Payrastre, L., Manenti, S., Viala, C., Remesy, C., Chap, H., and Payrastre, B., Relationship between flavonoid structure and inhibition of phosphatidylinositol 3-kinase: a comparison with tyrosine kinase and protein kinase C inhibition.Biochem. Pharmacol., 53, 1649–1657 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Akiyama, T., Ishida, J., Nakagawa, S., Ogawara, H., Watanabe, S., Itoh, N., Shibuya, M., and Fukami, Y., Genistein, a specific inhibitor of tyrosine-specific protein kinases.J. Biol. Chem., 262:5592–5595 (1987).

    PubMed  CAS  Google Scholar 

  • Carter, A. B., Knudtson, K. L., Monick, M. M., and Hunninghake, G. W., The p38 mitogen-activated protein kinase is required for NF-kappaB-dependent gene expression. The role of TATA-binding protein (TBP).J. Biol. Chem., 274, 30858–30863 (1999a).

    Article  PubMed  CAS  Google Scholar 

  • Carter, A. B., Monick, M. M., and Hunninghake, G. W., Both Erk and p38 kinases are necessary for cytokine gene transcription.Am. J. Respir. CellMol. Biol., 20, 751–758 (1999b).

    CAS  Google Scholar 

  • Cho, J. Y., Kim, P. S., Park, J., Yoo, E. S., Baik, K. U., Kim, Y. K., and Park, M. H., Inhibitor of tumor necrosis factor-alpha production in lipopolysaccharide-stimulated RAW264.7 cells from Amorpha fruticosa.J. Ethnopharmacol., 70, 127–133 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Cho, J. Y., Kim, P. S., Park, J., Chae, S. H., Yoo. E. S., Baik, K. U., and Park, M. H., Inhibitory effect of medicinal plants on TNF-α production from LPS-stimulated RAW264.7 cells.Nat. Prod. Sci., 5, 12–19 (1999).

    CAS  Google Scholar 

  • Choi, J. S., Chung, H. Y., Kang, S. S., Jung, M. J., Kim, J. W., No, J. K., and Jung, H. A., The structure-activity relationship of flavonoids as scavengers of peroxynitrite.Phytother. Res., 16, 232–235 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Cobb, M. and Goldsmith, E., How MAP kinases are regulated.J. Biol. Chem., 270, 14843–14846 (1999).

    Google Scholar 

  • Cushman, M., Nagarathnam, D., Burg, D. L., and Geahlen, R. L., Synthesis and protein-tyrosine kinase inhibitory activities of flavonoid analogues.J. Med. Chem., 34, 798–806 (1991).

    Article  PubMed  CAS  Google Scholar 

  • Faulkner, K. M., Liochev, S. I., and Fridovich, I., Stable Mn(III) porphyrins mimic superoxide dismutasein vitro and substitute for itin vivo.J. Biol. Chem., 269: 23471–23476 (1994).

    PubMed  CAS  Google Scholar 

  • Geahlen, R. L., Koonchanok, N. M., McLaughlin, J. L., and Pratt, D. E., Inhibition of protein-tyrosine kinase activity by flavanoids and related compounds.J. Nat. Prod., 52, 982–986 (1989).

    Article  PubMed  CAS  Google Scholar 

  • Guha, M. and Mackman, N. LPS induction of gene expression in human monocytes.Cell Signal., 13, 85–94 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Haenen, G., Paquay, J., Korthouwer, R., and Bast, A., Peroxynitrite scavenging by flavonoids.Biochem. Biophys. Res. Commun., 23, 591–593 (1997).

    Article  Google Scholar 

  • Heijnen, C. G., Haenen, G. R., van Acker, F. A., van der Vijgh, W. J., and Bast, A., Flavonoids as peroxynitrite scavengers: the role of the hydroxyl groups.Toxicol. In Vitro, 15, 3–6 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Hertog, M. G., Kromhout, D., Aravanis, C., Blackburn, H., Buzina, R., Fidanza, F., Giampaoli, S., Jansen, A., Menotti, A., and Nedeljkovic, S., Flavonoid intake and long-term risk of coronary heart disease and cancer in the seven countries study.Arch. Intern. Med., 155, 381–386 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Huie, R. and Padmaja, S., The reaction of NO and superoxide.Free Radic. Res. Commun., 18, 195–199 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Jung, H. A., Kim, A. R., Chung, H. Y., and Choi, J. S.,In vitro antioxidant activity of some selected Prunus species in Korea.Arch. Pharm. Res., 25, 865–872 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Kim, H. J., Yu, B. P., and Chung, H. Y., Molecular exploration of age-related NF-kappaB/1KK downregulation by calorie restriction in rat kidney.Free Radic. Biol. Med., 32, 991–1005 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Kim, H. K., Cheon, B. S., Kim, Y. H., Kim, S. Y., and Kim, H. P., Effects of naturally occurring flavonoids on nitric oxide production in the macrophage cell line RAW 264.7 and their structure-activity relationships.Biochem. Pharmacol., 58, 759–765 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Kimura, S., Watanabe, K., Yajiri, Y., Motegi, T., Masuya, Y., Shibuki, K., Uchiyama, S., Homma, T., and Takahashi, H., Cerebrospinal fluid nitric oxide metabolites in painful diseases.Neuro. Report, 10, 275–279 (1999).

    CAS  Google Scholar 

  • Klotz, L. O. and Sies, H., Defenses against peroxynitrite: selenocompounds and flavonoids.Toxicol. Lett., 140-141, 125–132 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Kooy, N., Royall, J., Ischiropoulos, H., and Beckman, J., Peroxynitrite-mediated oxidation of dihydrorhodamine 123.Free Radic. Res. Commun., 16, 149–156 (1994).

    CAS  Google Scholar 

  • Kroncke, K., Fehsel, K., and Kolb-Bachofen, V., Inducible nitric oxide synthase in human disease.Clin. Exp. Immunol., 113, 147–156 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Le Marchand, L., Cancer preventive effects of flavonoids-a review.Biomed. Pharmacother, 56, 296–301 (2002).

    Article  PubMed  Google Scholar 

  • Liang, Y., Huang, Y., Tsai, S., Lin-Shiau, S., Chwn, C., and Lin, J., Suppression of inducible cyclooxygenase and inducible nitric oxide synthase by apigenin and related flavonoids in mouse macrophages.Carcinogenesis, 20, 1945–1952 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Lazaro, M., Flavonoids as anticancer agents: structure-activity relationship study.Curr. Med. Chem. Anti-Cane, Agents 2, 691–714 (2002).

    Article  CAS  Google Scholar 

  • Mathy-Hartert, M., Deby-Dupont, G. P., Reginster, J. Y., Ayache, N., Pujol, J. P., and Henrotin, Y. E., Regulation by reactive oxygen species of interleukin-1beta, nitric oxide and prostaglandin E(2) production by human chondrocytes.Osteoarthritis Cartilage, 10, 547–555 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Matsuda, H., Morikawa, T., Ando, S., Toguchida, I., and Yoshikawa, M., Structural requirements of flavonoids for nitric oxide production inhibitory activity and mechanism of action.Bioorg. Med. Chem., 11, 1995–2000 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Mavis, R. and Stellwagen, E., Purification and subunit structure of glutathione reductase from bakers yeast.J. Biol. Chem., 243, 809–814 (1968).

    PubMed  CAS  Google Scholar 

  • Middleton, E. Jr., Kandaswami, C., and Theoharides, T. C., The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer.Pharmacol. Rev., 52, 673–751 (2000).

    PubMed  CAS  Google Scholar 

  • Nagata, N., Momose, K., and Ishida, Y., Inhibitory effects of catecholamines and anti-oxidants on the fluorescence reaction of 4,5-diaminofluorescein, DAF-2, a novel indicator of nitric oxide.J. Biochem., 125, 658–661 (1999).

    PubMed  CAS  Google Scholar 

  • Ohshima, H., Yoshie, Y., Auriol, S., and Gilibert, I., Antioxidant and pro-oxidant actions of flavonoids: effects on DNA damage induced by nitric oxide, peroxynitrite and nitroxyl anion.Free Radic. Biol. Med., 25, 1057–1065 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Olszanecki, R., Gebska, A., Kozlovski, V. I., and Gryglewski, R. J., Flavonoids and nitric oxide synthase.J. Physiol. Pharmacol., 53, 571–584 (2002).

    PubMed  CAS  Google Scholar 

  • Rice-Evans, C. A., Miller, N. J., and Paganga, G., Structure-antioxidant activity relationships of flavonoids and phenolic acids.Free Radic. Biol. Med., 20, 933–956 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Shen, S. C., Lee, W. R., Lin, H. Y., Huang, H. C., Ko, C. H., Yang, L. L., and Chen, Y. C.,In vitro andin vivo inhibitory activities of rutin, wogonin, and quercetin on lipopolysaccharide-induced nitric oxide and prostaglandin E(2) production.Eur. J. Pharmacol., 446, 187–194 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Stuehr, D., Mammalian nitric oxide synthase.Biochem. Biophys. Acta, 1441, 217–230 (1999).

    Google Scholar 

  • Tada, H., Shiho, O., Kuroshima, K., Koyama, M., and Tsukamoto, K., An improved colorimetric assay for interleukin 2.J. Immunol. Methods, 93, 157–165 (1986).

    Article  PubMed  CAS  Google Scholar 

  • Wheeler, A. P. and Bernard, G. R., Treating patients with severe sepsis.N. Engl. J. Med., 340, 207–214 (1999).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hae Young Chung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, A.R., Cho, J.Y., Zou, Y. et al. Flavonoids differentially modulate nitric oxide production pathways in lipopolysaccharide-activated RAW264.7 cells. Arch Pharm Res 28, 297–304 (2005). https://doi.org/10.1007/BF02977796

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02977796

Key words

Navigation