Archives of Pharmacal Research

, Volume 28, Issue 3, pp 274–279 | Cite as

Inhibition of interleukin-12 production in mouse macrophagesvia decreased nuclear factor-κB DNA binding activity by myricetin, a naturally occurring flavonoid

  • Bok Yun Kang
  • Seung Hyun Kim
  • Daeho Cho
  • Tae Sung KimEmail author
Drug design


Pharmacological inhibition of interleukin-12 (IL-12) production may be a therapeutic strategy for preventing the development and progression of disease in experimental models of autoimmunity. In this study, the effects of myricetin, a naturally occurring flavonoid present in fruits, vegetables and medicinal herbs, on the production of IL-12 were investigated in mouse macrophages stimulated with lipopolysaccharide (LPS). Myricetin significantly inhibited the LPS-induced IL-12 production from both primary macrophages and the RAW264.7 monocytic cell-line in a dose-dependent manner. The effect of myricetin on IL-12 gene promoter activation was analyzed by transfecting RAW264.7 cells with IL-12 gene promoter/luciferase constructs. The repressive effect was mapped to a region in the IL-12 gene promoter containing a binding site for NF-κB. Furthermore, activation of macrophages by LPS resulted in markedly enhanced binding activity to the NF-κB site, which significantly decreased upon addition of myricetin, indicating that myricetin inhibited IL-12 production in LPS-activated macrophagesvia the down-regulation of NF-κB binding activity.

Key words

Myricetin Interleukin-12 Macrophage Nuclear factor-κB 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adorini, L., Interleukin-12, a key cytokine in Th1-mediated autoimmune diseases.Cell Mol. Life Sci., 55, 1610–1625 (1999).PubMedCrossRefGoogle Scholar
  2. Chen, C. C., Chow, M. P., Huang, W. C., Lin, Y. C., and Chang, Y. J., Flavonoids inhibit tumor necrosis factor-alpha-induced up-regulation of intercellular adhesion molecule-1 (ICAM-1) in respiratory epithelial cells through activator protein-1 and nuclear factor-κB: structure-activity relationships.Mol. Pharmacol., 66, 683–693 (2004).PubMedCrossRefGoogle Scholar
  3. Chu, S. C., Hsieh, Y. S., and Lin, J. Y., Inhibitory effects of flavonoids on Moloney murine leukemia virus reverse transcriptase activity.J. Nat. Prod., 55, 179–183 (1992).PubMedCrossRefGoogle Scholar
  4. Constantinescu, C. S., Goodman, D. B., and Ventura, E. S., Captopril and lisinopril suppress production of interleukin-12 by human peripheral blood mononuclear cells.Immunol. Lett., 62, 25–31 (1998).PubMedCrossRefGoogle Scholar
  5. D’Ambrosio, D., Cippitelli, M., Cocciolo, M. G., Mazzeo, D., Di Lucia, P., Lang, R., Sinigaglia, F., and Panina-Bordignon, P., Inhibition of IL-12 production by 1,25-dihydroxyvitamin D3. Involvement of NF-κB downregulation in transcriptional repression of the p40 gene.J. Clin. Invest., 101, 252–262 (1998).PubMedCrossRefGoogle Scholar
  6. DeKruyff, R. H., Fang, Y., and Umetsu, D. T., Corticosteroids enhance the capacity of macrophages to induce Th2 cytokine synthesis in CD4+ lymphocytes by inhibiting IL-12 production.J. Immunol., 160, 2231–2237 (1998).PubMedGoogle Scholar
  7. Dignam, J. D., Lebovitz, R. M., and Roeder, R. G., Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei.Nucleic Acids Res., 11, 1475–1489 (1993).CrossRefGoogle Scholar
  8. Falcone, M. and Sarvetnick, N., Cytokines that regulate autoimmune responses.Curr. Opin. Immunol., 11, 670–676 (1999).PubMedCrossRefGoogle Scholar
  9. Gri, G., Savio, D., Trinchieri, G., and Ma, X., Synergistic regulation of the human interleukin-12 p40 promoter by NF-κB and Ets transcription factors in Epstein-Barr virus-transformed B cells and macrophages.J. Biol. Chem., 273, 6431–6438 (1998).PubMedCrossRefGoogle Scholar
  10. Joo, S. S., Chang, J. K., Park, J. H., Kang, H. C., and Lee, D. I., Immunoactivation of lectin-conjugated praecoxin A on IL-6, IL-12 expression.Arch. Pharm. Res., 25, 954–963 (2002).PubMedCrossRefGoogle Scholar
  11. Kang, B. Y., Chung, S. W., Cho, D., and Kim, T. S., Involvement of p38 mitogen-activated protein kinase in the induction of interleukin-12 p40 production in mouse macrophages by berberine, a benzodioxoloquinolizine alkaloid.Biochem. Pharmacol., 63, 1901–1910 (2002).PubMedCrossRefGoogle Scholar
  12. Kang, B. Y., Chung, S. W., Im, S. Y., Hwang, S. Y., and Kim, T. S., Chloromethyl ketones inhibit interleukin-12 production in mouse macrophages stimulated with lipopolysaccharide.Immunol. Lett., 70, 135–138 (1999).PubMedCrossRefGoogle Scholar
  13. Kang, K., Kubin, M., Cooper, K. D., Lessin, S. R., Trinchieri, G., and Rook, A. H., IL-12 synthesis by human Langerhans cells.J. Immunol., 156, 1402–1407 (1996).PubMedGoogle Scholar
  14. Kim, T. S., Kang, B. Y., Lee, M. H., Choe, Y. K., and Hwang, S. Y., Inhibition of interleukin-12 production by auranofin, an anti-rheumatic gold compound, deviates CD4+ T cells from the Th1 to the Th2 pathway.Br. J. Pharmacol., 134, 571–578 (2001).PubMedCrossRefGoogle Scholar
  15. Landolfi, R., Mower, R. L., and Steiner, M., Modification of platelet function and arachidonic acid metabolism by bioflavonoids. Structure-activity relations.Biochem. Pharmacol., 33, 1525–1530 (1984).PubMedCrossRefGoogle Scholar
  16. Ma, X., Chow, J. M., Gri, G., Carra, G., Gerosa, F., Wolf, S. F., Dzialo, R., and Trinchieri, G., The interleukin 12 p40 gene promoter is primed by interferon-γ in monocytic cells.J. Exp. Med., 83, 147–157 (1996).CrossRefGoogle Scholar
  17. Ma, X. and Trinchieri, G., Regulation of interleukin-12 production in antigen-presenting cells.Adv. Immunol., 79, 55–92 (2001).PubMedCrossRefGoogle Scholar
  18. Moller, D. R., Wysocka, W., Greenlee, B. M., Ma, X., Wahl, L., Flockhart, D. A., Trinchieri, G., and Karp, C. L., Inhibition of IL-12 production by thalidomide.J. Immunol., 159, 5157–1561 (1997).PubMedGoogle Scholar
  19. Na, S. Y., Kang, B. Y., Chung, S. W., Han, S. J., Ma, X., Trinchieri, G., Im, S. Y., Lee, J. W., and Kim, T. S., Retinoids inhibit interleukin-12 production in macrophages through physical associations of retinoid X receptor and NF-κB.J. Biol. Chem., 274, 7674–7680 (1999).PubMedCrossRefGoogle Scholar
  20. Ong, K. C. and Khoo, H. E., Effects of myricetin on glycemia and glycogen metabolism in diabetic rats.Life Sci., 67, 1695–1705 (2000).PubMedCrossRefGoogle Scholar
  21. Panina-Bordignon, P., Mazzeo, D., Lucia, P. D., D’Ambrosio, D., Lang, R., Fabbri, L., Self, C., and Sinigaglia, F., β2-Agonists prevent Th1 development by selective inhibition of interleukin 12.J. Clin. Invest., 100, 1513–1519 (1997).PubMedCrossRefGoogle Scholar
  22. Prud’homme, G. J., Gene therapy of autoimmune diseases with vectors encoding regulatory cytokines or inflammatory cytokine inhibitors.J. Gene Med., 2, 222–232 (2000).PubMedCrossRefGoogle Scholar
  23. Ross, J. A. and Kasum, C. M., Dietary flavonoids: bioavailability, metabolic effects, and safety.Annu. Rev. Nutr., 22, 19–33 (2002).PubMedCrossRefGoogle Scholar
  24. Theoharides, T. C., Alexandrakis, M., Kempuraj, D., and Lytinas, M., Anti-inflammatory actions of flavonoids and structural requirements for new design.Int. J. Immunopathol. Pharmacol., 14, 119–127 (2001).PubMedGoogle Scholar
  25. Tsai, S. H., Liang, Y. C., Lin-Shiau, S. Y., and Lin, J. K., Suppression of TNFalpha-mediated NFκB activity by myricetin and other flavonoids through downregulating the activity of IKK in ECV304 cells.J. Cell Biochem., 74, 606–615 (1999).PubMedCrossRefGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 2005

Authors and Affiliations

  • Bok Yun Kang
    • 2
  • Seung Hyun Kim
    • 2
  • Daeho Cho
    • 1
    • 2
  • Tae Sung Kim
    • 2
    Email author
  1. 1.Department of Life ScienceSookmyung Womens UniversitySeoulKorea
  2. 2.College of Pharmacy and Research Institute of Drug DevelopmentChonnam National UniversityGwangjuKorea

Personalised recommendations