Abstract
In spite of their pathophysiological importance in neuro-inflammatory diseases, little is known about the signal transduction pathways that lead to the induction of matrix metalloproteinases (MMPs) in the central nervous system. We reported previously that lipopolysaccharide (LPS) induced MMP-9 expression through ERK1/2 pathway in rat primary astrocytes(Glia 41:15–24, 2003). Here, we investigated the role of other MAPK pathways, including p38 and JNK/SAPK, on the regulation of MMP-9 expression in LPS-stimulated rat primary astrocytes. LPS activated both p38 and JNK in astrocytes. Treatment with a specific p38 MAPK inhibitor SB203580, but not JNK inhibitor SP600125, increased the LPS-stimulated MMP-9 expression in a concentration-dependent manner. Anti-inflammatory cytokines, including IFN-γ and IL-4, activated p38 MAPK and decreased MMP-9 production in LPS-stimulated astrocytes. When p38 MAPK activation was blocked by SB203580, the inhibitory effects of these cytokines on MMP-9 induction were abolished. Finally, direct injection of SB203580 into the lateral ventricle of rat brain increased the LPS-induced MMP-9 activity in cerebral cortex. Altogether, these results suggest that p38 activation down-regulates the inflammatory stimulation-induced over-expression of MMP-9, both in primary astrocytes and in cerebral cortex. The elaborate interplay between ERK1/2 and p38 pathways provides a more sophisticated mechanism for regulating MMP-9 activity in neuroinflammatory diseases.
Similar content being viewed by others
References
Anthony, D. C., Miller, K. M., Fearn, S., Townsend, M. J., Opdenakker, G., Wells, G. M., Clements, J. M., Chandler, S., Gearing, A. J., and Perry, V. H., Matrix metalloproteinase expression in an experimentally-induced DTH model of multiple sclerosis in the rat CNS.J. Neuroimmunol., 87, 62–72 (1998).
Arai, K., Lee, S. R., and Lo, E. H., Essential role for ERK mitogen-activated protein kinase in matrix metalloproteinase- 9 regulation in rat cortical astrocytes.Glia, 43, 254–264 (2003).
Asahi, M., Asahi, K., Jung, J. C., del Zoppo, G. J., Fini, M. E., and Lo, E. H., Role for matrix metalloproteinase-9 after focal cerebral ischemia: effects of gene knockout and enzyme inhibition with BB-94.J. Cereb. Blood Flow Metab., 20, 1681–1682 (2000).
Asahi, M., Wang, X., Mori, T., Sumii, T., Jung, J. C., Moskowitz, M. A., Fini, M. E., and Lo, E. H., Effects of matrix metalloproteinase-9 gene knock-out on the proteolysis of blood-brain barrier and white matter components after cerebral ischemia.J. Neurosci., 21, 7724–7732 (2001a).
Asahi, M., Sumii, T., Fini, M. E., Itohara, S., and Lo, E. H., Matrix metalloproteinase 2 gene knockout has no effect on acute brain injury after focal ischemia.Neuroreport, 12, 3003–3007 (2001b).
Chan, E. D. and Riches, D. W., IFN-gamma+LPS induction of iNOS is modulated by ERK, JNK/SAPK, and p38 in a mouse macrophage cell line. Am.J. Physiol. Cell. Physiol., 280, 441–450 (2001).
Choi, J. S., Jung, S. W., Ju, J. C., Lee, S. W., Kim, K. Y., and Kim, H. M., Cytokine production regulation in human astrocytes by a herbal combination (Yuldahansotang).Immunopharmacol. Immunotoxicol., 24, 55–67 (2002).
Cuenda, A., Rouse, J., Doza, Y. N., Meier, R., Cohen, P., Gallagher, T. F., Young, P. R., and Lee, J. C., SB203580 is a specific inhibitor of a MAP kinase homologue which is stimulated by cellular stresses and interleukin-1.FEBS Lett., 364, 229–233 (1995).
Doherty, G. M., Lange, J. R., Langstein, H. N., Alexander, H. R., Buresh, C. M., and Norton, J. A., Evidence for IFN-γ as a mediator of the lethality of endotoxin and tumor necrosis factor-α.J. Immunol., 149, 1660–1670 (1992).
Dong, Y. and Benveniste, E. N., Immune function of astrocytes.Glia, 36, 180–190 (2001).
Gijbels, K., Proost, P., Masure, S., Carton, H., Billiau, A., and Opdenakker, G., Gelatinase B is present in the cerebrospinal fluid during experimental autoimmune encephalomyelitis and cleaves myelin basic protein.J. Neurosci. Res., 36, 432–440 (1993).
Goh, K. C., Haque, S. J., and Williams, B. R., p38 MAP kinase is required for STAT1 serine phosphorylation and transcriptional activation induced by interferons.EMBO J., 18, 5601–5608 (1999).
Harkness, K. A., Adamson, P., Sussman, J. D., Davies-Jones, G. A., Greenwood, J., and Woodroofe, M. N., Dexamethasone regulation of matrix metalloproteinase expression in CNS vascular endothelium.Brain, 123, 698–709 (2000).
Hsieh, H., Yen, M., Jou, M., and Yang, C., Intracellular signalings underlying bradykinin-induced matrix metalloproteinase-9 expression in rat brain astrocyte-1.Cell. Signal., 16, 1163–1176 (2004).
Ihn, H., Yamane, K., Asano, Y., Kubo, M., and Tamaki, K., IL-4 up-regulates the expression of tissue inhibitor of metallo-proteinase-2 in dermal fibroblastsvia the p38 mitogen- activated protein kinase-dependent pathway.J. Immunol., 168, 1895–1902 (2002).
Jiang, X., Namura, S., and Nagata, I., Matrix metalloproteinase inhibitor KB-R7785 attenuates brain damage resulting from permanent focal cerebral ischemia in mice.Neurosci. Lett., 305, 41–44 (2001).
Kieseier, B. C., Seifert, T., Giovannoni, G., and Hartung, H. P., Matrix metalloproteinases in inflammatory demyelination: Targets for treatment.Neurology, 53, 20–25 (1999).
Lai, W., Zhou, M., Shankavaram, U., Peng, G., and Wahl, L. M., Differential regulation of lipopolysaccharide-induced monocyte matrix metalloproteinase (MMP)-1 and MMP-9 by p38 and extracellular signal-regulated kinase 1/2 mitogen-activated protein kinases.J. Immunol., 170, 6244–6249 (2003).
Lee, W. J., Shin, C. Y., Yoo, B. K., Ryu, J. R., Choi, E. Y., Cheong, J. H., Ryu, J. H., and Ko, K. H., Induction of matrix metalloproteinase-9 (MMP-9) in lipopolysaccharide-stimulated primary astrocytes is mediated by extracellular signal-regulated protein kinase 1/2 (Erk1/2).Glia, 41, 15–24 (2003a).
Lee, H. M., Jin, H. S., Park, J. W., Park, S. M., Jeon, H. K., and Lee, T. H., IL-4 augments anisomycin-induced p38 activation via Akt pathway in a follicular dendritic cell (FDC)-like line.FEBS Lett., 549, 110–114 (2003b).
Lee, W. J., Shin, J. S., Park, J. Y., Kwon, D., Choi, S. J., Kim, S. J., and Choi, I. H., p38 mitogen-activated protein kinase modulates expression of tumor necrosis factor-related apoptosis-inducing ligand induced by interferon-gamma in fetal brain astrocytes.J. Neurosci. Res., 74, 884–890 (2003c).
Lee, K. H., Hyun, M. S., and Kim, J., Growth factor-dependent activation of the MAPK pathway in human pancreatic cancer: MEK/ERK and p38 MAP kinase interaction in uPA synthesis.Clin. Exp. Metastasis, 20, 499–505 (2003d).
Ma, Z., Qin, H., and Benveniste, E. N., Transcriptional suppression of matrix metalloproteinase-9 gene expression by IFN- gamma and IFN-beta: Critical role of STAT-1 alpha.J. Immunol., 167, 5150–5159 (2001).
Oh, L. Y. S., Larsen, P. H., Krekoski, C. A., Edwards, D. R., Donovan, F., Werb, Z., and Yong, V. W., Matrix metalloproteinase-9/gelatinase B is required for process outgrowth by oligodendrocytes.J. Neurosci., 19, 8464–8475 (1999).
Ravanti, L., Hakkinen, L., Larjava, H., Saarialho-Kere, U., Foschi, M., Han, J., and Kahari, V. M., Transforming growth factor-beta induces collagenase-3 expression by human gingival fibroblasts via p38 mitogen-activated protein kinase.J. Biol. Chem., 274, 37292–37300 (1999a).
Ravanti, L., Heino, J., Lopez-Otin, C., and Kahari, V., Induction of collagenase-3 (MMP-13) expression in human skin fibroblasts by three-dimensional collagen is mediated by p38 mitogen-activated protein kinase.J. Biol. Chem., 274, 2446–2455 (1999b).
Rosenberg, G. A., Estrada, E. Y., and Dencoff, J. E., Matrix metalloproteinases and TIMPs are associated with blood- brain barrier opening after reperfusion in rat brain.Stroke, 29, 2189–2195 (1998).
Wallenius, K., Wallenius, V., Sunter, D., Dickson, S. L., and Jansson, J. O., Intracerebroventricular interleukin-6 treatment decreases body fat in rats.Biochem. Biophys. Res. Commun., 293, 560–565 (2002).
Wang, X., Jung, J., Asahi, M., Chwang, W., Russo, L., Moskowitz, M. A., Dixon, C. E., Fini, M. E., and Lo, E. H., Effects of matrix metalloproteinase 9 gene knockout on morphological and motor outcomes after traumatic brain injury.J. Neurosci., 20, 7037–7043 (2000).
Westermarck, J., Li, S. P., Kallunki, T., Han, J., and Kahari, V. M., p38 mitogen-activated protein kinase-dependent activation of protein phosphatases 1 and 2A inhibits MEK1 and MEK2 activity and collagenase 1 (MMP-1) gene expression.Mol. Cell. Biol., 21, 2373–2383 (2001).
Wu, C., Hsieh, H., Jou, M., and Yang, C., Involvement of p42/44 MAPK, p38 MAPK, JNK and nuclear factor-kappa B in interieukin-1β-induced matrix metalloproteinase-9 expression in rat brain astrocytes.J. Neurochem., 90, 1477–1488 (2004).
Yong, V. W., Krekoski, C. A., Forsyth, P. A., Bell, R., and Edwards, D. R., Matrix metalloproteinases and diseases of the CNS.Trends Neurosci., 21, 75–80 (1998).
Zeigler, M. E., Chi, Y., Schmidt, T., and Varani, J., Role of ERK and JNK pathways in regulating cell motility and matrix metalloproteinase 9 production in growth factor-stimulated human epidermal keratinocytes.J. Cell. Physiol., 180, 271–284 (1999).
Author information
Authors and Affiliations
Corresponding author
Additional information
These authors contributed equally to this work.
Rights and permissions
About this article
Cite this article
Shin, C.Y., Lee, W.J., Choi, J.W. et al. Role of p38 mapk on the down-regulation of matrix metallo-proteinase-9 expression in rat astrocytes. Arch Pharm Res 30, 624–633 (2007). https://doi.org/10.1007/BF02977658
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF02977658


