Skip to main content

Advertisement

Log in

Role of p38 mapk on the down-regulation of matrix metallo-proteinase-9 expression in rat astrocytes

  • Articles
  • Drug Development
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

In spite of their pathophysiological importance in neuro-inflammatory diseases, little is known about the signal transduction pathways that lead to the induction of matrix metalloproteinases (MMPs) in the central nervous system. We reported previously that lipopolysaccharide (LPS) induced MMP-9 expression through ERK1/2 pathway in rat primary astrocytes(Glia 41:15–24, 2003). Here, we investigated the role of other MAPK pathways, including p38 and JNK/SAPK, on the regulation of MMP-9 expression in LPS-stimulated rat primary astrocytes. LPS activated both p38 and JNK in astrocytes. Treatment with a specific p38 MAPK inhibitor SB203580, but not JNK inhibitor SP600125, increased the LPS-stimulated MMP-9 expression in a concentration-dependent manner. Anti-inflammatory cytokines, including IFN-γ and IL-4, activated p38 MAPK and decreased MMP-9 production in LPS-stimulated astrocytes. When p38 MAPK activation was blocked by SB203580, the inhibitory effects of these cytokines on MMP-9 induction were abolished. Finally, direct injection of SB203580 into the lateral ventricle of rat brain increased the LPS-induced MMP-9 activity in cerebral cortex. Altogether, these results suggest that p38 activation down-regulates the inflammatory stimulation-induced over-expression of MMP-9, both in primary astrocytes and in cerebral cortex. The elaborate interplay between ERK1/2 and p38 pathways provides a more sophisticated mechanism for regulating MMP-9 activity in neuroinflammatory diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anthony, D. C., Miller, K. M., Fearn, S., Townsend, M. J., Opdenakker, G., Wells, G. M., Clements, J. M., Chandler, S., Gearing, A. J., and Perry, V. H., Matrix metalloproteinase expression in an experimentally-induced DTH model of multiple sclerosis in the rat CNS.J. Neuroimmunol., 87, 62–72 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Arai, K., Lee, S. R., and Lo, E. H., Essential role for ERK mitogen-activated protein kinase in matrix metalloproteinase- 9 regulation in rat cortical astrocytes.Glia, 43, 254–264 (2003).

    Article  PubMed  Google Scholar 

  • Asahi, M., Asahi, K., Jung, J. C., del Zoppo, G. J., Fini, M. E., and Lo, E. H., Role for matrix metalloproteinase-9 after focal cerebral ischemia: effects of gene knockout and enzyme inhibition with BB-94.J. Cereb. Blood Flow Metab., 20, 1681–1682 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Asahi, M., Wang, X., Mori, T., Sumii, T., Jung, J. C., Moskowitz, M. A., Fini, M. E., and Lo, E. H., Effects of matrix metalloproteinase-9 gene knock-out on the proteolysis of blood-brain barrier and white matter components after cerebral ischemia.J. Neurosci., 21, 7724–7732 (2001a).

    PubMed  CAS  Google Scholar 

  • Asahi, M., Sumii, T., Fini, M. E., Itohara, S., and Lo, E. H., Matrix metalloproteinase 2 gene knockout has no effect on acute brain injury after focal ischemia.Neuroreport, 12, 3003–3007 (2001b).

    Article  PubMed  CAS  Google Scholar 

  • Chan, E. D. and Riches, D. W., IFN-gamma+LPS induction of iNOS is modulated by ERK, JNK/SAPK, and p38 in a mouse macrophage cell line. Am.J. Physiol. Cell. Physiol., 280, 441–450 (2001).

    Google Scholar 

  • Choi, J. S., Jung, S. W., Ju, J. C., Lee, S. W., Kim, K. Y., and Kim, H. M., Cytokine production regulation in human astrocytes by a herbal combination (Yuldahansotang).Immunopharmacol. Immunotoxicol., 24, 55–67 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Cuenda, A., Rouse, J., Doza, Y. N., Meier, R., Cohen, P., Gallagher, T. F., Young, P. R., and Lee, J. C., SB203580 is a specific inhibitor of a MAP kinase homologue which is stimulated by cellular stresses and interleukin-1.FEBS Lett., 364, 229–233 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Doherty, G. M., Lange, J. R., Langstein, H. N., Alexander, H. R., Buresh, C. M., and Norton, J. A., Evidence for IFN-γ as a mediator of the lethality of endotoxin and tumor necrosis factor-α.J. Immunol., 149, 1660–1670 (1992).

    Google Scholar 

  • Dong, Y. and Benveniste, E. N., Immune function of astrocytes.Glia, 36, 180–190 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Gijbels, K., Proost, P., Masure, S., Carton, H., Billiau, A., and Opdenakker, G., Gelatinase B is present in the cerebrospinal fluid during experimental autoimmune encephalomyelitis and cleaves myelin basic protein.J. Neurosci. Res., 36, 432–440 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Goh, K. C., Haque, S. J., and Williams, B. R., p38 MAP kinase is required for STAT1 serine phosphorylation and transcriptional activation induced by interferons.EMBO J., 18, 5601–5608 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Harkness, K. A., Adamson, P., Sussman, J. D., Davies-Jones, G. A., Greenwood, J., and Woodroofe, M. N., Dexamethasone regulation of matrix metalloproteinase expression in CNS vascular endothelium.Brain, 123, 698–709 (2000).

    Article  PubMed  Google Scholar 

  • Hsieh, H., Yen, M., Jou, M., and Yang, C., Intracellular signalings underlying bradykinin-induced matrix metalloproteinase-9 expression in rat brain astrocyte-1.Cell. Signal., 16, 1163–1176 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Ihn, H., Yamane, K., Asano, Y., Kubo, M., and Tamaki, K., IL-4 up-regulates the expression of tissue inhibitor of metallo-proteinase-2 in dermal fibroblastsvia the p38 mitogen- activated protein kinase-dependent pathway.J. Immunol., 168, 1895–1902 (2002).

    PubMed  CAS  Google Scholar 

  • Jiang, X., Namura, S., and Nagata, I., Matrix metalloproteinase inhibitor KB-R7785 attenuates brain damage resulting from permanent focal cerebral ischemia in mice.Neurosci. Lett., 305, 41–44 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Kieseier, B. C., Seifert, T., Giovannoni, G., and Hartung, H. P., Matrix metalloproteinases in inflammatory demyelination: Targets for treatment.Neurology, 53, 20–25 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Lai, W., Zhou, M., Shankavaram, U., Peng, G., and Wahl, L. M., Differential regulation of lipopolysaccharide-induced monocyte matrix metalloproteinase (MMP)-1 and MMP-9 by p38 and extracellular signal-regulated kinase 1/2 mitogen-activated protein kinases.J. Immunol., 170, 6244–6249 (2003).

    PubMed  CAS  Google Scholar 

  • Lee, W. J., Shin, C. Y., Yoo, B. K., Ryu, J. R., Choi, E. Y., Cheong, J. H., Ryu, J. H., and Ko, K. H., Induction of matrix metalloproteinase-9 (MMP-9) in lipopolysaccharide-stimulated primary astrocytes is mediated by extracellular signal-regulated protein kinase 1/2 (Erk1/2).Glia, 41, 15–24 (2003a).

    Article  PubMed  Google Scholar 

  • Lee, H. M., Jin, H. S., Park, J. W., Park, S. M., Jeon, H. K., and Lee, T. H., IL-4 augments anisomycin-induced p38 activation via Akt pathway in a follicular dendritic cell (FDC)-like line.FEBS Lett., 549, 110–114 (2003b).

    Article  PubMed  CAS  Google Scholar 

  • Lee, W. J., Shin, J. S., Park, J. Y., Kwon, D., Choi, S. J., Kim, S. J., and Choi, I. H., p38 mitogen-activated protein kinase modulates expression of tumor necrosis factor-related apoptosis-inducing ligand induced by interferon-gamma in fetal brain astrocytes.J. Neurosci. Res., 74, 884–890 (2003c).

    Article  PubMed  CAS  Google Scholar 

  • Lee, K. H., Hyun, M. S., and Kim, J., Growth factor-dependent activation of the MAPK pathway in human pancreatic cancer: MEK/ERK and p38 MAP kinase interaction in uPA synthesis.Clin. Exp. Metastasis, 20, 499–505 (2003d).

    Article  PubMed  CAS  Google Scholar 

  • Ma, Z., Qin, H., and Benveniste, E. N., Transcriptional suppression of matrix metalloproteinase-9 gene expression by IFN- gamma and IFN-beta: Critical role of STAT-1 alpha.J. Immunol., 167, 5150–5159 (2001).

    PubMed  CAS  Google Scholar 

  • Oh, L. Y. S., Larsen, P. H., Krekoski, C. A., Edwards, D. R., Donovan, F., Werb, Z., and Yong, V. W., Matrix metalloproteinase-9/gelatinase B is required for process outgrowth by oligodendrocytes.J. Neurosci., 19, 8464–8475 (1999).

    PubMed  CAS  Google Scholar 

  • Ravanti, L., Hakkinen, L., Larjava, H., Saarialho-Kere, U., Foschi, M., Han, J., and Kahari, V. M., Transforming growth factor-beta induces collagenase-3 expression by human gingival fibroblasts via p38 mitogen-activated protein kinase.J. Biol. Chem., 274, 37292–37300 (1999a).

    Article  PubMed  CAS  Google Scholar 

  • Ravanti, L., Heino, J., Lopez-Otin, C., and Kahari, V., Induction of collagenase-3 (MMP-13) expression in human skin fibroblasts by three-dimensional collagen is mediated by p38 mitogen-activated protein kinase.J. Biol. Chem., 274, 2446–2455 (1999b).

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg, G. A., Estrada, E. Y., and Dencoff, J. E., Matrix metalloproteinases and TIMPs are associated with blood- brain barrier opening after reperfusion in rat brain.Stroke, 29, 2189–2195 (1998).

    PubMed  CAS  Google Scholar 

  • Wallenius, K., Wallenius, V., Sunter, D., Dickson, S. L., and Jansson, J. O., Intracerebroventricular interleukin-6 treatment decreases body fat in rats.Biochem. Biophys. Res. Commun., 293, 560–565 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Wang, X., Jung, J., Asahi, M., Chwang, W., Russo, L., Moskowitz, M. A., Dixon, C. E., Fini, M. E., and Lo, E. H., Effects of matrix metalloproteinase 9 gene knockout on morphological and motor outcomes after traumatic brain injury.J. Neurosci., 20, 7037–7043 (2000).

    PubMed  CAS  Google Scholar 

  • Westermarck, J., Li, S. P., Kallunki, T., Han, J., and Kahari, V. M., p38 mitogen-activated protein kinase-dependent activation of protein phosphatases 1 and 2A inhibits MEK1 and MEK2 activity and collagenase 1 (MMP-1) gene expression.Mol. Cell. Biol., 21, 2373–2383 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Wu, C., Hsieh, H., Jou, M., and Yang, C., Involvement of p42/44 MAPK, p38 MAPK, JNK and nuclear factor-kappa B in interieukin-1β-induced matrix metalloproteinase-9 expression in rat brain astrocytes.J. Neurochem., 90, 1477–1488 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Yong, V. W., Krekoski, C. A., Forsyth, P. A., Bell, R., and Edwards, D. R., Matrix metalloproteinases and diseases of the CNS.Trends Neurosci., 21, 75–80 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Zeigler, M. E., Chi, Y., Schmidt, T., and Varani, J., Role of ERK and JNK pathways in regulating cell motility and matrix metalloproteinase 9 production in growth factor-stimulated human epidermal keratinocytes.J. Cell. Physiol., 180, 271–284 (1999).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwang Ho Ko.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shin, C.Y., Lee, W.J., Choi, J.W. et al. Role of p38 mapk on the down-regulation of matrix metallo-proteinase-9 expression in rat astrocytes. Arch Pharm Res 30, 624–633 (2007). https://doi.org/10.1007/BF02977658

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02977658

Key words