Antimicrobial property of (+)-lyoniresinol-3α-O-β-d-Glucopyranoside isolated from the root bark ofLycium chinense Miller against human pathogenic microorganisms

Abstract

(+)-Lyoniresinol-3α-O-β-d-glucopyranoside (1) was isolated from an ethyl acetate extract of the root bark fromLycium chinense Miller, and its structure was determined using 1D and 2D NMR spectroscopy including DEPT, HMQC, and HMBC. (+)-Lyoniresinol-3α-O-β-d-glucopyranoside exhibited potent antimicrobial activity against antibiotic-resistant bacterial strains, methicillinresistantStaphylococcus aureus (MRSA) isolated from patients, and human pathogenic fungi without having any hemolytic effect on human erythrocytes. In particular, compound1 induced the accumulation of intracellular trehalose onC. albicans as stress response to the drug, and disrupted the dimorphic transition that forms pseudo-hyphae caused by the pathogenesis. This indicates that (+)-lyoniresinol-3α-O-β-d-glucopyranoside has excellent potential as a lead compound for the development of antibiotic agents.

This is a preview of subscription content, access via your institution.

References

  1. Achenbach, H., Löwel, M., Waibel, R., Gupta, M., and Solis, P., New lignan glucosides fromStemmadenia minima.Planta Med., 58, 270–272 (1992).

    PubMed  Article  CAS  Google Scholar 

  2. Alvarez-Peral, F. J. and Arguelles, J.-C., Changes in external trehalase activity during human serum-induced dimorphic transition inCandida albicans.Res. Microbiol., 151, 837–843 (2000).

    PubMed  Article  CAS  Google Scholar 

  3. Blondle, S. E. and Houghten, R. A., Design of model amphipathic peptides having potent antimicrobial activities.Biochemistry, 31, 12688–12694 (1992).

    Article  Google Scholar 

  4. Funayama, S., Yoshida, K., Konno, H., and Hikkino, H., Structure of Kukoamine A, a hypotensive principle ofLycium chinense root bark.Tetrahedron Lett., 21, 1355–1356 (1980).

    Article  CAS  Google Scholar 

  5. Funayama, S., Zhang, G.-R., Nozoe, S., and Kukoamine, B., A spermine alkaloid fromLycium chinense.Phytochemistry, 38, 1529–1531 (1995).

    Article  CAS  Google Scholar 

  6. Han, S.-H., Lee, H.-H., Lee, I.-S., Moon, Y.-H., and Woo, E.-R., A new phenolic amide fromLycium chinense Miller.Arch. Pharm. Res., 25, 433–437 (2002).

    PubMed  Article  CAS  Google Scholar 

  7. Kim, S. Y., Choi, Y.-H., Huh, H., Kim, J., Kim, Y. C., and Lee, H. S., New antihepatotoxic cerebroside fromLycium chinense Fruits.J. Nat. Prod., 60, 274–276 (1997).

    PubMed  Article  CAS  Google Scholar 

  8. Lehrer, R., Lichtenstein, A. K., and Ganz, T., Defensins: Antimicrobial and cytotoxic peptides of mammalian cells.Annu. Rev. Immunol., 11, 105–128 (1993).

    PubMed  Article  CAS  Google Scholar 

  9. Lee, D. G., Park, Y., Kim, M.-R., Jung, H. J., Seu, Y. B., Hahm, K.-S., and Woo, E.-R., Antifungal effects of phenolic amides isolated from the root bark ofLycium chinense.Biotechnol. Lett., 26, 1125–1130 (2004).

    PubMed  Article  CAS  Google Scholar 

  10. Mclain, N., Ascaniom, R., Baker, C., Strohaver, R. A., and Dolan, J. W., Undeclenic acid inhibits morphogenesis ofCandida albicans.Antimicrob. Agents Chemothr., 44, 2873–2875 (2000).

    Article  CAS  Google Scholar 

  11. Morota, T., Sasaki, H., Chin, M., Sato, T., Katayama, N., Fukuyama, K., and Mitsuhashi, H., Studies on the crude drug containing the angiotensin I converting enzyme inhibitors (I) on the active principles ofLycium chinense Miller.Shoyakugaku Zasshi, 41, 169–173 (1987).

    CAS  Google Scholar 

  12. Sannai, A., Fujimori, T., and Kato, K., Isolation of (−)-1,2-dehydro-α-cyperone and solavetivone fromLycium chinense.Phytochemistry, 21, 2986–2987 (1982).

    Article  CAS  Google Scholar 

  13. Sengupta, S., Jana, M. L., Sengupta, D., and Naskar, A. K., A note on the estimation of microbial glycosidase activities by dinitrosalicylic acid reagent.Appl. Microbiol. Biotechnol., 53, 732–735 (2000).

    PubMed  Article  CAS  Google Scholar 

  14. Terauchi, M., Kanamori, H., Nobuso, M., Yahara, S., and Nohara, T., Detection and determination of antioxidative components inLycium chinense.Nat. Med., 51, 387–391

  15. Terauchi, M., Kanamori, H., Nobuso, M., Yahara, S., and Yamasaki, K., New acyclic diterpene glycoside, Lyciumoside IV–IX fromLycium chinense Mill.Nat. Med., 52, 167–171 (1998).

    CAS  Google Scholar 

  16. Yahara, S., Shigeyama, C., Ura, T., Wakamatsu, K., Yasuhara, T., and Nohara, T., Cyclic peptides, acyclic diterpene glycoside and other compounds fromLycium chinense Mill.Chem. Pharm. Bull., 41, 703–709 (1993).

    PubMed  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Eun-Rhan Woo.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lee, D.G., Jung, H.J. & Woo, ER. Antimicrobial property of (+)-lyoniresinol-3α-O-β-d-Glucopyranoside isolated from the root bark ofLycium chinense Miller against human pathogenic microorganisms. Arch Pharm Res 28, 1031–1036 (2005). https://doi.org/10.1007/BF02977397

Download citation

Key words

  • Lycium chinense
  • Solanaceae
  • (+)-Lyoniresinol-3α-O-β-d-glucopyranoside
  • Antimicrobial activity
  • MRSA
  • Stress response