Skip to main content
Log in

Preparation and characterization of solid dispersions of itraconazole by using aerosol solvent extraction system for improvement in drug solubility and bioavailability

  • Articles
  • Drug Efficacy
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

The objective of this study was to elucidate the feasibility to improve the solubility and bioavailability of poorly water-soluble itraconazolevia solid dispersions by using supercritical fluid (SCF). Solid dispersions of itraconazole with hydrophilic polymer, HPMC 2910, were prepared by the aerosol solvent extraction system (ASES) under different process conditions of temperature/pressure. The particle size of solid dispersions ranged from 100 to 500 nm. The equilibrium solubility increased with decrease (15 to 10 MPa) in pressure and increase (40 to 60°C) in temperature. The solid dispersions prepared at 45°C/15 MPa showed a slight increase in equilibrium solubility (approximately 27-fold increase) when compared to pure itraconazole, while those prepared at 60°C/10 MPa showed approximately 610-fold increase and no endothermic peaks corresponding to pure itraconazole were observed, indicating that itraconazole might be molecularly dispersed in HPMC 2910 in the amorphous form. The amorphous state of itraconazole was confirmed by DSC/XRD data. The pharmacokinetic parameters of the ASES-processed solid dispersions, such as Tmax, Cmax, and AUC0–24h were almost similar to Sporanox® capsule which shows high bioavailability. Hence, it was concluded that the ASES process could be a promising technique to reduce particle size and/or prepare amorphous solid dispersion of drugs in order to improve the solubility and bioavailability of poorly water-soluble drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bleich, J. and Muller, B. W., Production of drug loaded microparticles by the use of supercritical gases with the aerosol solvent extraction system (ASES) process.J. Microencapsul., 13, 131–139 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Bustami, R. T., Chan, H., Sweeney, T., Dehghani, F., and Foster, N. R., Generation of fine powders of recombinant human deoxyribonuclease using the aerosol solvent extraction system.Pharm. Res., 20, 2028–2035 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Colette, B. L. E., Geert, V., and Dany, T., Antifungal compositions with improved bioavailability. Patent WO 97-44014 (1997).

  • De Beule K. and Van Gestel, J., Pharmacology of itraconazole.Drugs, 61, 27–37 (2001).

    Article  PubMed  Google Scholar 

  • Elvassore, N., Baggio, M., Pallado, P., and Bertucco, A., Production of different morphologies of biocompatible polymeric materials by supercritical CO2 antisolvent techniques.Biotechnol. Bioeng., 73, 449–457 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Engwicht, A., Girreser, U., and Muller, B. W., Critical properties of lactide-co-glycolide polymers for the use in microparticle preparation by the aerosol solvent extraction system.Int. J. Pharm., 185, 61–72 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Ghaderi, R., Artursson, P., and Carlfors, J., Preparation of biodegradable microparticles using solution-enhanced dispersion by supercritical fluids (SEDS).Pharm. Res., 16, 676–681 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Harwood, R. J., Hydroxypropylmethylcellulose, Handbook of Pharmaceutical Expients 3rd edition, American Pharmaceutical Association/The Pharmaceutical Press, p. 252–255 (2000).

  • Jung, J. and Perrut, M., Particle design using supercritical fluids: Literature and patent survey.J. Supercrit. Fluid, 20, 179–219 (2001).

    Article  CAS  Google Scholar 

  • Jung, J. Y., Yoo, S. D., Lee, S. H., Kim, K. H., Yoon, D. S., and Lee, K. H., Enhanced solubility and dissolution rate of itraconazole by a solid dispersion technique.Int. J. Pharm., 187, 209–218 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Kitamura, M., Yamamoto, M., Yoshinaga, Y., and Masuoka, H., Crystal size control of sulfathiazole using high pressure carbon dioxide.J. Cryst. Growth., 178, 378–386 (1997).

    Article  CAS  Google Scholar 

  • Kohri, N., Yamayoshi, Y., Xin, H., Iseki, K., Sato, N., Todo, S., and Miyazaki, K., Improving the oral bioavailability of albendazole in rabbits by the solid dispersion technique.J. Pharm. Phamacol., 51, 159–164 (1999).

    Article  CAS  Google Scholar 

  • Kordikowski, A., Shkunov, T., and York, P., Polymorph control of sulfathizole in supercritical CO2.Pharm. Res., 18, 682–688 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Leuner, C. and Dressman, J., Improving drug solubility for oral delivery using solid dispersions.Eur. J. Pharm. Biopharm., 50, 47–60 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Marr, R. and Gamse, T., Use of supercritical fluids for different processes including new developments-a review.Chem. Eng. Proc., 39, 19–28 (2000).

    Article  CAS  Google Scholar 

  • Martin, T. M., Bandi, N., Shulz, R., Roberts C. B., and Kompella, U. B., Preparation of Budesonide and Budesonide-PLA Microparticles Using Supercritical Fluid Precipitation Technology.AAPS Pharm. Sci. Teh., 3(3): article 18 (2002).

    Google Scholar 

  • Miyake, K., Irie, T., Arima, H., Hirayama, F., Uekama, K., Hirano, M., and Okamaoto, Y., Characterization of itraconazole/2-hydroxypropyl-beta-cyclodextrin inclusion complex in aqueous propyleneglycol solution.Int. J. Pharm., 179, 237–245 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Moneghini, M., Kikic, I., Voinovich, D., Perissutti, B., and Filipovic-Grcic, J., Processing of carbamazepine-PEG 4000 solid dispersions with supercritical carbon dioxide: preparation, characterisation, andin vitro dissolution.Int. J. Pharm., 222, 129–138 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Okimoto, K., Miyake, M., Ibuki, R., Yamasumura, M., Ohnish, N., and Nakai, T., Dissolution mechanism and rate of solid dispersion particles of nilvadipine with hydroxypropyl methylcellulose.Int. J. Pharm., 159, 85–93 (1997).

    Article  CAS  Google Scholar 

  • Palakodaty, S. and York, P., Phase behavioral effects on particle formation processes using supercritical fluids.Pharm. Res. 16, 976–985 (1997).

    Article  Google Scholar 

  • Palakodaty, S., York, P., and Pritchard, J., Supercritical fluid processing of materials from aqueous solutions: the application of SEDS to lactose as a model substance.Pharm. Res., 15, 1835–1843 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Paul, M. V., Valentine, F. V., and Roger, P. G., Beads having a core coated with an antifungal and a polymer. Patent WO 94-05263 (1994).

  • Randolph, T. W., Randolph, A. D., Mebes, M. and Yeung, S., Sub-micrometer-sized biodegradable particles of poly(l-lactic acid)via the gas antisolvent spray precipitation process.Biotechnol. Prog., 9, 429–435 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Shin-Etsu Catalogue, USP Hydroxypropyl Methylcellulose, “PHARMACOAT” Film Coating Materil and Binder, No 95.9/1,000, Shin-Etsu Chemical Co., Ltd.

  • Stevens, D. A., Itraconazole in cyclodextrin solution.Pharmacotherapy, 19, 603–611 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Suzuki, H. and Sunada, H., Influence of water-soluble polymers on the dissolution of nifedipine solid dispersions with combined carriers.Chem. Pharm. Bull., 46, 482–487 (1998).

    PubMed  CAS  Google Scholar 

  • Tom, J. W. and Debenedetti, P. G., Formation of bioerodible polymeric microspheres and microparticles by rapid expansion of supercritical solutions.Biotechnol. Prog., 7, 403–411 (1991).

    Article  PubMed  CAS  Google Scholar 

  • Uch, A. S., Hesse, U., and Dressman, J. B., Use of 1-methyl-pyrrolidone as a solubilizing agent for determining the uptake of poorly soluble drugs.Pharm. Res., 16, 968–671 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Willems, L., van der Geest, R., and de Beule, K., Itraconazole oral solution and intravenous formulations: a review of pharmacokinetics and pharmacodynamics.J. Clin. Pharm. Therap., 26, 159–169 (2001).

    Article  CAS  Google Scholar 

  • Woo, J. S., Antifungal oral composition containing itraconazole and process for preparing same. US Patent 6,039,981 (2000).

  • Yeo, S. D., Debendetti, P. G., Patro, S. Y., and Przybycien, T. M., Secondary structure characterization of microparticulate insulin powders.J. Pharm. Sci., 83, 1651–1656 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Yoo, S. D., Lee, S. H., Kang, E., Jun, J., Jung, J. Y., Park, J. W., and Lee, K. H., Bioavailability of itraconazole in rats and rabbits after administration of tablets containing solid dispersion particles.Drug Dev. Ind. Pharm., 26, 27–34 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Young, T. J., Mawson, S., Johnston, K. P., Henriksen, I. B., Pace, G. W., and Mishra, A. K., Rapid expansion from supercritical to aqueous solution to produce submicron suspensions of water-insoluble drugs.Biotechnol. Prog., 16, 402–407 (2000).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Joo Hwang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, S., Nam, K., Kim, M.S. et al. Preparation and characterization of solid dispersions of itraconazole by using aerosol solvent extraction system for improvement in drug solubility and bioavailability. Arch Pharm Res 28, 866–874 (2005). https://doi.org/10.1007/BF02977355

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02977355

Key words

Navigation