Skip to main content

Antioxidative constituents fromPaeonia lactiflora

Abstract

The ethanol extract of the peony root (Paeonia Lactiflora Pall, Paeoniaceae) as well as its major active components including gallic acid and methyl gallate were evaluated for their protective effects against free radical generation and lipid peroxidation. In addition, the protective effects against hydrogen peroxide-induced oxidative DNA damage in a mammalian cell line were examined. The ethanol extracts of the peony root (PREs) and its active constituents, galdiphenyl-2-picryl hydrazine (DPPH) radical generation and had an inhibitory effect on lipid peroxidation, as measured by the level of malondialdehyde (MDA) formation. The PREs did not have any pro-oxidant effect. They strongly inhibited the hydrogen peroxide-induced DNA damage from NIH/3T3 fibroblasts, as assessed by single cell gel electrophoresis. Furthermore, the oral administration of 50% PRE (50% ethanol extract of peony root), gallic acid and methyl gallate potently inhibited the formation of micronucleated reticulocytes (MNRET) in the mouse peripheral blood induced by a KBrOP3 treatmentin vivo. Therefore, PREs containing gallic acid and methyl gallate may be a useful antigenotoxic antioxidant by scavenging free radicals, inhibiting lipid peroxidation and protecting against oxidative DNA damage without exhibiting any pro-oxidant effect.

This is a preview of subscription content, access via your institution.

References

  • Beckman, K. B. and Ames, B. N., The free radical theory of aging matures.Physiol. Rev., 78, 547–581 (1998).

    PubMed  CAS  Google Scholar 

  • Dizdaroglu, M., Oxidative damage to DNA in mammalian chromatin.Mutat. Res., 275, 331–342 (1992).

    PubMed  CAS  Google Scholar 

  • Feig, D. I., Reid, T. M., and Loeb, L. A., Reactive oxygen species in tumorigenesis.Cancer Res., 54, Suppl. 7, 1890–1894 (1994).

    Google Scholar 

  • Festa, F., Aglitti, T., Duranti, G., Ricordy, R., Perticone, P., and Cozzi, R., Strong antioxidant activity of ellagic acid in mammalian cellsin vitro revealed by the comet assay.Anticancer Res., 21, 3903–3908 (2001).

    PubMed  CAS  Google Scholar 

  • Fugita, Y., Uera, I., Morimoto, Y., Nakajima, M., Hatano, C., and Okuda, T., Studies on inhibition mechanism of auto-oxidation by tannins and flavonoids. II. Inhibition mechanism of coffee tannin isolated from leaves ofArtemisia species on lipoxygenase dependent lipid peroxidation.Yakugaku Zasshi, 108, 129–135 (1988).

    Google Scholar 

  • Galato, D., Ckless, K., Susin, M. F., Giacomelli, C., Ribeiro-do-Valle, R. M., and Spinelli, A., Antioxidant capacity of phenolic and related compounds: correlation among electrochemical, visible spectroscopy methods and structure-antioxidant activity.Redox Rep., 6, 243–250 (2001).

    PubMed  Article  CAS  Google Scholar 

  • Guyton, K. G. and Kensler, T. W., Oxidative mechanisms in carcinogenesis.Br. Med. Bull., 49, 523–544 (1993).

    PubMed  CAS  Google Scholar 

  • Hayashi, M., Morita, T., Kodama, Y., Sofuni, T., and Ishidate, Jr, M., The micronucleus assay with mouse peripheral blood reticulocytes using acridine orange-coated slides.Mutat. Res., 245, 245–249 (1990).

    PubMed  Article  CAS  Google Scholar 

  • Honokaa, S., Nose, M., and Ishige, A., Effect of hachimi-jio-gan on scopolamine-induced memory impairment and on acetylcholine content in rat brain.J. Ethnopharmacol., 50, 77–84 (1996).

    Article  Google Scholar 

  • Huh, Z., Dong-Eu-Bo-Gam, Translated Ed., Namsandang, Seoul, Korea, p. 1160, (1966).

    Google Scholar 

  • Kang, S. S., Kim, J. S., Yun-Choi H. S., and Han, B. H., Phytochemical Studies on Paeoniae Radix.Kor. J. Pharmacogn., 24, 247–250 (1993).

    CAS  Google Scholar 

  • Kasai, H., Analysis of a form of oxidative DNA damage, 8-hydroxy-2-deoxyguanosine, as a marker of cellular oxidative stress during carcinogenesis.Mutat. Res., 387, 147–163 (1997).

    PubMed  Article  CAS  Google Scholar 

  • Kitagawa, I., Yoshikawa, M., Tsunaga, K. and Tani, T., Studies on MOUTAN CORTEX (2) On the Chemical Constituents.Shoyakugaku Zasshi, 33, 171–177 (1979).

    CAS  Google Scholar 

  • Labieniec, M. and Gabryelak, T., Measurement of DNA damage and protein oxidation after the incubation of B14 Chinese hamster cells with chosen polyphenols.Toxicol. Lett., 155, 15–25 (2005).

    PubMed  Article  CAS  Google Scholar 

  • Laughton, M. J., Halliwell, B., Evans, P. J., and Hoult, J. R. S., Antioxidant and pro-oxidant actions of the plant phenolics quercetin, gossypol, and myricetin.Biochem. Pharmacol., 38, 2859–2865 (1989).

    PubMed  Article  CAS  Google Scholar 

  • Lin, H. C., Ding, H. Y., and Ko, F. N., Aggregation inhibitory activity of minor acetophenones from Paeonia species.Planta Med., 65, 595–599 (1999).

    PubMed  Article  CAS  Google Scholar 

  • Lu, C. Y., Lee H. C., Fahn, H. J., and Wei, Y. H., Oxidative damage elicited by imbalance of free radical scavenging enzymes is associated with large-scale mtDNA deletions in aging human skin.Mutat. Res., 423, 11–21 (1999).

    PubMed  CAS  Google Scholar 

  • Lynch, R. E. and Fridovich, I., Permeation of the erythrocyte stroma by superoxide radical.J. Biol. Chem., 253, 1838–1845 (1978).

    PubMed  CAS  Google Scholar 

  • Miranda, J. L., Barry, H., Patricia, J. E., and Robin S. H., Antioxidant and pro-oxidant actions of the plant phenolics quercetin, gossypol, and myricetin.Biochemical Pharmacology, 38, 2859–2865 (1989).

    Article  Google Scholar 

  • Naczk, M., Wanasundara, P. K., and Shahadi, F., Facile spectrophotometric quantification method of sinapic acid in hexane-extracted and methanol-ammonia-water-treated mustard and rapeseed meas.J. Agric. Food Chem., 40, 445–448 (1992).

    Article  Google Scholar 

  • Ng, T. B., Liu, F., and Wang, Z. T., Antioxidative activity of natural products from plants.Life Science, 66, 709–723 (2000).

    Article  CAS  Google Scholar 

  • Niki, E., Antioxidants in relation to lipid peroxidation.Chem. Phys. Lipid, 44, 227–253 (1987).

    Article  CAS  Google Scholar 

  • Niki, E. and Noguchi, N., Evaluation of antioxidant capacity. What capacity is being measured by which method?.IUBMB Life, 50, 323–329 (2000).

    PubMed  Article  CAS  Google Scholar 

  • Ohkawa, H., Ohishi, N., and Yagi, K., Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction.Anal. Biochem., 5, 351–358 (1979).

    Article  Google Scholar 

  • Ohta, H., Ni, J. W., and Matsumoto, K., Paeony and its major constituent, paeoniflorin, improve radial maze performance impaired by scopolamine in rats.Pharmacol. Biochem. Behav., 45, 719–723 (1993).

    PubMed  Article  CAS  Google Scholar 

  • Okezie I.K., Antonia, M., John, B., and Barry, H., Evaluation of the antioxidant and pro-oxidant actions of gallic acid and its derivatives.J. Agric. Food Chem., 41, 1880–1885 (1993).

    Article  Google Scholar 

  • Okubo, T., Nagai, F., and Seto, T., The inhibition of phenyl-hydroquinone-induced oxidative DNA cleavage by constituents of moutan cortex and paeoniae radix.Biol. Pharm. Bull., 23, 199–203 (2000).

    PubMed  CAS  Google Scholar 

  • Okubo, T., Nagai, F., Ushiyama, K., and Kano, I., Contribution of oxygen radicals to DNA cleavage by quinone compounds derived from phenolic antioxidants,tert-butylhydroquinone and 2,5-di-tert-butylhydroquinone.Toxicol. Lett., 90, 11–18 (1997).

    PubMed  Article  CAS  Google Scholar 

  • Olive, P. L., Banath, R. E., and Durand, R. E., Heterogenecity in radiation-induced DNA damage and repair in tumor and normal cells measured using the comet assay.Radiat. Res., 122, 86–94 (1990).

    PubMed  Article  CAS  Google Scholar 

  • Pryor, W. A. and Tang, R. H., Ethylene formation from methanol.Biochem. Biophys. Res. Com., 81, 498–503 (1978).

    PubMed  Article  CAS  Google Scholar 

  • Qi, X. G., Protective mechanism of Salvia miltiorrhiza and Paeonia lactiflora for experimental liver damage.Chung Hsi I Chieh Ho Tsa Chih, 11, 102–104 (1991).

    PubMed  CAS  Google Scholar 

  • Rice-Evans, C. A., Miller, N. J., and Paganga, G., Structure-antioxidant activity relationships of flavonoids and phenolic acids.Free Radic. Biol. Med., 20, 933–956 (1996).

    PubMed  Article  CAS  Google Scholar 

  • Robbiano, L., Carrozzino, R., Puglia, C. P., Corbu, C., and Brambilla, G., Correlation between induction of DNA fragmentation and micronuclei formation in kidney cells from rats and humans and tissue-specific carcinogenic activity.Toxicol. Appl. Pharmacol., 161, 153–159 (1999).

    PubMed  Article  CAS  Google Scholar 

  • Sai, K., Hayashi, M., Takagi, A., Hasegawa, R., Sofuni, T., and Kurokawa, Y., Effects of antioxidants on induction of micronuclei in rat peripheral blood reticulocytes by potassium bromate.Mutat. Res., 269, 113–118 (1992).

    PubMed  CAS  Google Scholar 

  • Sakai, Y., Nagase, H., and Ose, Y., Inhibitory action of peony root extract on the mutagenicity of benzo[a]pyrene.Mutat. Res., 244, 129–134 (1990).

    PubMed  Article  CAS  Google Scholar 

  • Schlesier, K., Harwat, M., Bohm, V., and Bitsch, R., Assessment of antioxidant activity by using differentin vitro methods.Free Radic. Res., 36, 177–187 (2002).

    PubMed  Article  CAS  Google Scholar 

  • Sing, N. P., McCoy, M. T., Tice, R. R., and Schneider, E. L., A simple technique for quantitation of low levels of DNA damage in individual cells.Exp. Cell Res., 175, 184–191 (1988).

    Article  Google Scholar 

  • Sroka, Z. and Cisowski, W., Hydrogen peroxide scavenging, antioxidant and anti-radical activity of some phenolic acids.Food Chem. Toxicol., 41, 753–758 (2003).

    PubMed  Article  CAS  Google Scholar 

  • Sugisawa, A., Kimura, M., Fenech, M., and Umegaki, K., Antigenotoxic effects of tea catechins against reactive oxygen species in human lymphoblastoid cells.Mutat. Res., 559, 97–103 (2004).

    PubMed  CAS  Google Scholar 

  • Watanabe, S., Togashi, S., and Fukui, T., Conrtibution of nitric oxide to potassium bromate-induced elevation of methaemoglobin concentration tin mouse blood.Biol. Pharm. Bull., 25, 1315–1319 (2002).

    PubMed  Article  CAS  Google Scholar 

  • Wu, H. K. and Sheu, S. J., Capillary electrophoretic determination of the constituents of paeoniae radix.J. Chromatogr. A., 753, 139–146 (1996).

    PubMed  Article  CAS  Google Scholar 

  • Wu, L. T., Chu, C. C., Chung, J. G., Chen, C. H., Hsu, L. S., Liu, J. K., and Chen, S. C., Effects of tannic acid and its related compounds on food mutagens or hydrogen, peroxide-induced DNA strands breaks in human lymphocytes.Mutat. Res., 556, 75–82 (2004).

    PubMed  CAS  Google Scholar 

  • Yoshikawa, M., Uchida, E., Kawaguchi, A., Kitagawa, I., and Yamahara, J., Galloyl-Oxypaeoniflorin, Suffriticosieds A, B, C, and D, Five New Antioxidative glycosides, and suffriticoside E, A Paeonol glycoside, from Chinese Moutan Cortex.Chem. Pharm. Bull., 40, 2248–2250 (1992).

    PubMed  CAS  Google Scholar 

  • Zhang, Y., The effects of nifedipine, ditiazem, and Paeonia lactiflora Pall on atherogenesis in rabbits.Chung Hua Hsin Hsueh Kuan Ping Tsa Chih, 19, 100–103 (1991).

    PubMed  CAS  Google Scholar 

  • Zhang, W. G. and Zhang, Z. S., Anti-ischemia reperfusion and damage and anti-lipid peroxidation effects of paeonol in rat heart.Yao Hsueh Hsueh Pao, 29, 145–148 (1994).

    PubMed  Google Scholar 

  • Zheng, W. and Wang, S. Y., Antioxidant activity and phenolic compounds in selected herbs.J. Agric. Food Chem., 49, 5165–5170 (2001).

    PubMed  Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moon Young Heo.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lee, S.C., Kwon, Y.S., Son, K.H. et al. Antioxidative constituents fromPaeonia lactiflora . Arch Pharm Res 28, 775–783 (2005). https://doi.org/10.1007/BF02977342

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02977342

Key words

  • Paeonia lactiflora
  • Peony root
  • Gallic acid
  • Methyl gallate
  • Oxidative stress
  • Antioxidant
  • Free radical scavenging
  • Single cell gel electrophoresis
  • Micronucleus assay
  • Potassium bromate