Beckman, K. B. and Ames, B. N., The free radical theory of aging matures.Physiol. Rev., 78, 547–581 (1998).
PubMed
CAS
Google Scholar
Dizdaroglu, M., Oxidative damage to DNA in mammalian chromatin.Mutat. Res., 275, 331–342 (1992).
PubMed
CAS
Google Scholar
Feig, D. I., Reid, T. M., and Loeb, L. A., Reactive oxygen species in tumorigenesis.Cancer Res., 54, Suppl. 7, 1890–1894 (1994).
Google Scholar
Festa, F., Aglitti, T., Duranti, G., Ricordy, R., Perticone, P., and Cozzi, R., Strong antioxidant activity of ellagic acid in mammalian cellsin vitro revealed by the comet assay.Anticancer Res., 21, 3903–3908 (2001).
PubMed
CAS
Google Scholar
Fugita, Y., Uera, I., Morimoto, Y., Nakajima, M., Hatano, C., and Okuda, T., Studies on inhibition mechanism of auto-oxidation by tannins and flavonoids. II. Inhibition mechanism of coffee tannin isolated from leaves ofArtemisia species on lipoxygenase dependent lipid peroxidation.Yakugaku Zasshi, 108, 129–135 (1988).
Google Scholar
Galato, D., Ckless, K., Susin, M. F., Giacomelli, C., Ribeiro-do-Valle, R. M., and Spinelli, A., Antioxidant capacity of phenolic and related compounds: correlation among electrochemical, visible spectroscopy methods and structure-antioxidant activity.Redox Rep., 6, 243–250 (2001).
PubMed
Article
CAS
Google Scholar
Guyton, K. G. and Kensler, T. W., Oxidative mechanisms in carcinogenesis.Br. Med. Bull., 49, 523–544 (1993).
PubMed
CAS
Google Scholar
Hayashi, M., Morita, T., Kodama, Y., Sofuni, T., and Ishidate, Jr, M., The micronucleus assay with mouse peripheral blood reticulocytes using acridine orange-coated slides.Mutat. Res., 245, 245–249 (1990).
PubMed
Article
CAS
Google Scholar
Honokaa, S., Nose, M., and Ishige, A., Effect of hachimi-jio-gan on scopolamine-induced memory impairment and on acetylcholine content in rat brain.J. Ethnopharmacol., 50, 77–84 (1996).
Article
Google Scholar
Huh, Z., Dong-Eu-Bo-Gam, Translated Ed., Namsandang, Seoul, Korea, p. 1160, (1966).
Google Scholar
Kang, S. S., Kim, J. S., Yun-Choi H. S., and Han, B. H., Phytochemical Studies on Paeoniae Radix.Kor. J. Pharmacogn., 24, 247–250 (1993).
CAS
Google Scholar
Kasai, H., Analysis of a form of oxidative DNA damage, 8-hydroxy-2-deoxyguanosine, as a marker of cellular oxidative stress during carcinogenesis.Mutat. Res., 387, 147–163 (1997).
PubMed
Article
CAS
Google Scholar
Kitagawa, I., Yoshikawa, M., Tsunaga, K. and Tani, T., Studies on MOUTAN CORTEX (2) On the Chemical Constituents.Shoyakugaku Zasshi, 33, 171–177 (1979).
CAS
Google Scholar
Labieniec, M. and Gabryelak, T., Measurement of DNA damage and protein oxidation after the incubation of B14 Chinese hamster cells with chosen polyphenols.Toxicol. Lett., 155, 15–25 (2005).
PubMed
Article
CAS
Google Scholar
Laughton, M. J., Halliwell, B., Evans, P. J., and Hoult, J. R. S., Antioxidant and pro-oxidant actions of the plant phenolics quercetin, gossypol, and myricetin.Biochem. Pharmacol., 38, 2859–2865 (1989).
PubMed
Article
CAS
Google Scholar
Lin, H. C., Ding, H. Y., and Ko, F. N., Aggregation inhibitory activity of minor acetophenones from Paeonia species.Planta Med., 65, 595–599 (1999).
PubMed
Article
CAS
Google Scholar
Lu, C. Y., Lee H. C., Fahn, H. J., and Wei, Y. H., Oxidative damage elicited by imbalance of free radical scavenging enzymes is associated with large-scale mtDNA deletions in aging human skin.Mutat. Res., 423, 11–21 (1999).
PubMed
CAS
Google Scholar
Lynch, R. E. and Fridovich, I., Permeation of the erythrocyte stroma by superoxide radical.J. Biol. Chem., 253, 1838–1845 (1978).
PubMed
CAS
Google Scholar
Miranda, J. L., Barry, H., Patricia, J. E., and Robin S. H., Antioxidant and pro-oxidant actions of the plant phenolics quercetin, gossypol, and myricetin.Biochemical Pharmacology, 38, 2859–2865 (1989).
Article
Google Scholar
Naczk, M., Wanasundara, P. K., and Shahadi, F., Facile spectrophotometric quantification method of sinapic acid in hexane-extracted and methanol-ammonia-water-treated mustard and rapeseed meas.J. Agric. Food Chem., 40, 445–448 (1992).
Article
Google Scholar
Ng, T. B., Liu, F., and Wang, Z. T., Antioxidative activity of natural products from plants.Life Science, 66, 709–723 (2000).
Article
CAS
Google Scholar
Niki, E., Antioxidants in relation to lipid peroxidation.Chem. Phys. Lipid, 44, 227–253 (1987).
Article
CAS
Google Scholar
Niki, E. and Noguchi, N., Evaluation of antioxidant capacity. What capacity is being measured by which method?.IUBMB Life, 50, 323–329 (2000).
PubMed
Article
CAS
Google Scholar
Ohkawa, H., Ohishi, N., and Yagi, K., Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction.Anal. Biochem., 5, 351–358 (1979).
Article
Google Scholar
Ohta, H., Ni, J. W., and Matsumoto, K., Paeony and its major constituent, paeoniflorin, improve radial maze performance impaired by scopolamine in rats.Pharmacol. Biochem. Behav., 45, 719–723 (1993).
PubMed
Article
CAS
Google Scholar
Okezie I.K., Antonia, M., John, B., and Barry, H., Evaluation of the antioxidant and pro-oxidant actions of gallic acid and its derivatives.J. Agric. Food Chem., 41, 1880–1885 (1993).
Article
Google Scholar
Okubo, T., Nagai, F., and Seto, T., The inhibition of phenyl-hydroquinone-induced oxidative DNA cleavage by constituents of moutan cortex and paeoniae radix.Biol. Pharm. Bull., 23, 199–203 (2000).
PubMed
CAS
Google Scholar
Okubo, T., Nagai, F., Ushiyama, K., and Kano, I., Contribution of oxygen radicals to DNA cleavage by quinone compounds derived from phenolic antioxidants,tert-butylhydroquinone and 2,5-di-tert-butylhydroquinone.Toxicol. Lett., 90, 11–18 (1997).
PubMed
Article
CAS
Google Scholar
Olive, P. L., Banath, R. E., and Durand, R. E., Heterogenecity in radiation-induced DNA damage and repair in tumor and normal cells measured using the comet assay.Radiat. Res., 122, 86–94 (1990).
PubMed
Article
CAS
Google Scholar
Pryor, W. A. and Tang, R. H., Ethylene formation from methanol.Biochem. Biophys. Res. Com., 81, 498–503 (1978).
PubMed
Article
CAS
Google Scholar
Qi, X. G., Protective mechanism of Salvia miltiorrhiza and Paeonia lactiflora for experimental liver damage.Chung Hsi I Chieh Ho Tsa Chih, 11, 102–104 (1991).
PubMed
CAS
Google Scholar
Rice-Evans, C. A., Miller, N. J., and Paganga, G., Structure-antioxidant activity relationships of flavonoids and phenolic acids.Free Radic. Biol. Med., 20, 933–956 (1996).
PubMed
Article
CAS
Google Scholar
Robbiano, L., Carrozzino, R., Puglia, C. P., Corbu, C., and Brambilla, G., Correlation between induction of DNA fragmentation and micronuclei formation in kidney cells from rats and humans and tissue-specific carcinogenic activity.Toxicol. Appl. Pharmacol., 161, 153–159 (1999).
PubMed
Article
CAS
Google Scholar
Sai, K., Hayashi, M., Takagi, A., Hasegawa, R., Sofuni, T., and Kurokawa, Y., Effects of antioxidants on induction of micronuclei in rat peripheral blood reticulocytes by potassium bromate.Mutat. Res., 269, 113–118 (1992).
PubMed
CAS
Google Scholar
Sakai, Y., Nagase, H., and Ose, Y., Inhibitory action of peony root extract on the mutagenicity of benzo[a]pyrene.Mutat. Res., 244, 129–134 (1990).
PubMed
Article
CAS
Google Scholar
Schlesier, K., Harwat, M., Bohm, V., and Bitsch, R., Assessment of antioxidant activity by using differentin vitro methods.Free Radic. Res., 36, 177–187 (2002).
PubMed
Article
CAS
Google Scholar
Sing, N. P., McCoy, M. T., Tice, R. R., and Schneider, E. L., A simple technique for quantitation of low levels of DNA damage in individual cells.Exp. Cell Res., 175, 184–191 (1988).
Article
Google Scholar
Sroka, Z. and Cisowski, W., Hydrogen peroxide scavenging, antioxidant and anti-radical activity of some phenolic acids.Food Chem. Toxicol., 41, 753–758 (2003).
PubMed
Article
CAS
Google Scholar
Sugisawa, A., Kimura, M., Fenech, M., and Umegaki, K., Antigenotoxic effects of tea catechins against reactive oxygen species in human lymphoblastoid cells.Mutat. Res., 559, 97–103 (2004).
PubMed
CAS
Google Scholar
Watanabe, S., Togashi, S., and Fukui, T., Conrtibution of nitric oxide to potassium bromate-induced elevation of methaemoglobin concentration tin mouse blood.Biol. Pharm. Bull., 25, 1315–1319 (2002).
PubMed
Article
CAS
Google Scholar
Wu, H. K. and Sheu, S. J., Capillary electrophoretic determination of the constituents of paeoniae radix.J. Chromatogr. A., 753, 139–146 (1996).
PubMed
Article
CAS
Google Scholar
Wu, L. T., Chu, C. C., Chung, J. G., Chen, C. H., Hsu, L. S., Liu, J. K., and Chen, S. C., Effects of tannic acid and its related compounds on food mutagens or hydrogen, peroxide-induced DNA strands breaks in human lymphocytes.Mutat. Res., 556, 75–82 (2004).
PubMed
CAS
Google Scholar
Yoshikawa, M., Uchida, E., Kawaguchi, A., Kitagawa, I., and Yamahara, J., Galloyl-Oxypaeoniflorin, Suffriticosieds A, B, C, and D, Five New Antioxidative glycosides, and suffriticoside E, A Paeonol glycoside, from Chinese Moutan Cortex.Chem. Pharm. Bull., 40, 2248–2250 (1992).
PubMed
CAS
Google Scholar
Zhang, Y., The effects of nifedipine, ditiazem, and Paeonia lactiflora Pall on atherogenesis in rabbits.Chung Hua Hsin Hsueh Kuan Ping Tsa Chih, 19, 100–103 (1991).
PubMed
CAS
Google Scholar
Zhang, W. G. and Zhang, Z. S., Anti-ischemia reperfusion and damage and anti-lipid peroxidation effects of paeonol in rat heart.Yao Hsueh Hsueh Pao, 29, 145–148 (1994).
PubMed
Google Scholar
Zheng, W. and Wang, S. Y., Antioxidant activity and phenolic compounds in selected herbs.J. Agric. Food Chem., 49, 5165–5170 (2001).
PubMed
Article
CAS
Google Scholar