Skip to main content
Log in

The signaling mechanism of the sphingosylphosphorylcholine-induced contraction in cat esophageal smooth muscle cells

  • Article
  • Drug efficacy and safety
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

We investigated the signaling pathway on sphingosinephosphorylcholine (SPC) -induced contraction in cat esophageal smooth muscle cells. SPC induced in a dose-dependent manner contractile effect. We have previously shown that lysophospholipid (LPL) receptor subtypes including the S1P1, S1P2, S1P3, and S1P5 receptor are present in esophageal smooth muscle. Only EDG-5 (S1P2) receptor antibody penetration into permeablilized cells inhibited the SPC-induced contraction. Pertussis toxin (PTX) and specific antibodies to Gi1, Gi2, Gi3 and Go inhibited the contraction, implying that SPC-induced contraction depends on PTX-sensitive Gi1, Gi2, Gi3, and Go protein. A phospholipase inhibitor U73122 and incubation of permeabilized cells with PLC-β3 antibody inhibited SPC-induced contraction. The PKC-mediated contraction may be isozyme specific since only PKCε antibody inhibited the contraction. Preincubation with MEK inhibitor PD98059 blocked the SPC-induced contraction, but p38 MAPK inhibitor SB202190 did not. Cotreatment with GF109203X and PD98059 did not show synergistic effects, suggesting that these two kinases are involved in the same signaling pathway in the SPC-induced contraction. The data suggest that S1P-induced contraction in feline esophageal smooth muscle cells depends on activation of the Gi1, Gi2, Gi3 and Go proteins and the PLCβ3 isozyme via the S1P2 receptor, leading to stimulation of a PKCε pathway, which subsequently activates a p44/p42 MAPK pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

pCMB:

p-chloromercuribenzoic acid

DEDA:

dimethyl-eicosadienoic acid

EDG:

endothelial differentiation gene

ERK:

extracellular signal-regulated protein kinases

MAPK:

mitogen-activated protein kinase

PKC:

protein kinase C

PLC:

phospholipase C

PLD:

phospholipase D

LA2 :

phospholipase A2

PTX:

pertussis toxin

SPC:

sphingosinephosphoryl-choline

SDS:

sodium dodecyl sulfate

References

  • Bektas, M., Barak, L. S., Jolly, P. S., Liu, H., Lynch, K. Ft., Lacana, E., Suhr, K. B., Milstien, S., and Spiegel, S., The G. protein-coupled receptor GPR4 suppresses ERK activation in a ligand-independent manner.Biochemistry, 42, 12181- 12191 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Biancani, P., Hillemeier, C., Bitar, K. N., and Makhlouf, G. M., Contraction mediated by Ca2+ influx in esophageal muscle and by Ca2+ release in the LES.Am. J. Physiol., 253, G760–766 (1987).

    PubMed  CAS  Google Scholar 

  • Bischoff, A., Czyborra, P., Fetscher, C., Meyer Zu Heringdorf, D., Jakobs, K. H., and Michel, M. C., Sphingosine-1-phosphate and sphingosylphosphorylcholine constrict renal and mesenteric microvessels in vitro.Br J. Pharmacol., 130, 1871–1877 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Bitar, K. N. and Yamada, H., Modulation of smooth muscle contraction by sphingosylphosphorylcholine.Am. J. Physiol., 269, G370–377 (1995).

    PubMed  CAS  Google Scholar 

  • Boguslawski, G., Lyons, D., Harvey, K. A., Kovala, A. T., and English, D., Sphingosylphosphorylcholine induces endothelial cell migration and morphogenesis.Biochem. Biophys. Res. Commun., 272, 603–609 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Bunemann, M., Liliom, K., Brandts, B. K., Pott, L., Tseng, J. L., Desiderio, D. M., Sun, G., Miller, D., and Tigyi, G., A novel membrane receptor with high affinity for lysosphingomyelin and sphingosine 1-phosphate in atrial myocytes.Embo. J., 15, 5527–5534 (1996).

    PubMed  CAS  Google Scholar 

  • Cain, A. E., Tanner, D. M., and Khalil, R. A., Endothelin-1- induced enhancement of coronary smooth muscle contraction via MAPK-dependent and MAPK-independent [Ca(2+)](i) sensitization pathways.Hypertension, 39, 543–549 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Calcerrada, M. C., Miguel, B. G., Catalan, R. E., and Martinez, A. M., Sphingosylphosphorylcholine increases calcium concentration in isolated brain nuclei.Neurosci. Res., 33, 229- 232 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Cao, W., Chen, Q., Sohn, U. D., Kim, N., Kirber, M. T., Harnett, K. M., Behar, J., and Biancani, P., Ca2+-induced contraction of cat esophageal circular smooth muscle cells.Am. J. Physiol. Cell Physiol., 280, C980–992 (2001).

    PubMed  CAS  Google Scholar 

  • Chin, T. Y. and Chueh, S. H., Sphingosylphosphorylcholine stimulates mitogen-activated protein kinase via a Ca2+-dependent pathway.Am. J. Physiol., 275, C1255–1263 (1998).

    PubMed  CAS  Google Scholar 

  • Chun, J., Goetzl, E. J., Hla, T., Igarashi, Y., Lynch, K. R., Moolenaar, W., Pyne, S., and Tigyi, G., International Union of Pharmacology. XXXIV. Lysophospholipid receptor nomenclature.Pharmacol. Rev., 54, 265–269 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Cobb, M. H. and Goldsmith, E. J., How MAP kinases are regulated.J. Biol. Chem., 270, 14843–14846 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Desai, N. N., Carlson, R. O., Mattie, M. E., Olivera, A., Buckley, N. E., Seki, T., Brooker, G., and Spiegel, S., Signaling pathways for sphingosylphosphorylcholine-mediated mitogenesis in Swiss 3T3 fibroblasts.J. Cell Biol., 121, 1385–1395 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Desai, N. N. and Spiegel, S., Sphingosylphosphorylcholine is a remarkably potent mitogen for a variety of cell lines.Biochem. Biophys. Res. Commun., 181, 361–366 (1991).

    Article  PubMed  CAS  Google Scholar 

  • Fabiato, A. and Fabiato, F., Calculator programs for computing the composition of the solutions containing multiple metals and ligands used for experiments in skinned muscle cells.J. Physiol. (Paris), 75, 463–505 (1979).

    CAS  Google Scholar 

  • Ghosh, T. K., Bian, J., and Gill, D. L., Sphingosine 1-phosphate generated in the endoplasmic reticulum membrane activates release of stored calcium.J. Biol. Chem., 269, 22628–22635 (1994).

    PubMed  CAS  Google Scholar 

  • Horowitz, A., Clement-Chomienne, O., Walsh, M. P., and Morgan, K. G., Epsilon-isoenzyme of protein kinase C induces a Ca(2+)-independent contraction in vascular smooth muscle.Am. J. Physiol., 271, C589–594 (1996).

    PubMed  CAS  Google Scholar 

  • Ignatov, A., Lintzel, J., Hermans-Borgmeyer, I., Kreienkamp, H. J., Joost, P., Thomsen, S., Methner, A., and Schaller, H. C., Role of the G-protein-coupled receptor GPR12 as high- affinity receptor for sphingosylphosphorylcholine and its expression and function in brain development.J. Neurosci., 23, 907–914 (2003).

    PubMed  CAS  Google Scholar 

  • Ishihata, A., Tasaki, K., and Katano, Y., Involvement of p44/42 mitogen-activated protein kinases in regulating angiotensin II- and endothelin-1-induced contraction of rat thoracic aorta.Eur. J. Pharmacol., 445, 247–256 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Jeon, E. S., Kang, Y. J., Song, H. Y., Woo, J. S., Jung, J. S., Kim, Y. K., and Kim, J. H., Role of MEK-ERK pathway in sphingosylphosphorylcholine-induced cell death in human adipose tissue-derived mesenchymal stem cells.Biochim. Biophys. Acta., 1734, 25–33 (2005).

    PubMed  CAS  Google Scholar 

  • Katayama, T., Yoshiyama, S., Tanaka, H., Wang, H. H., Nakamura, A., and Kohama, K., Blebbistatin inhibits sphingo- sylphosphorylcholine-induced contraction of collagen-gel fiber populated by vascular smooth-muscle cells.J. Pharmacol. Sci., 102, 339–342 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Khalil, R. A., Lajoie, C., Resnick, M. S., and Morgan, K. G., Ca(2+)-independent isoforms of protein kinase C differentially translocate in smooth muscle.Am. J. Physiol., 263, C714–719 (1992).

    PubMed  CAS  Google Scholar 

  • Kitazawa, T., Eto, M., Woodsome, T. P., and Brautigan, D. L., Agonists trigger G. protein-mediated activation of the CPI-17 inhibitor phosphoprotein of myosin light chain phosphatase to enhance vascular smooth muscle contractility.J. Biol. Chem., 275, 9897–9900 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Lee, T., Kim, J., and Sohn, U., Sphingosylphosphorylcholine- induced contraction of feline ileal smooth muscle cells is mediated by Galphai3 protein and MAPK.Cell Signal., 14, 989–997 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Liliom, K., Sun, G., Bunemann, M., Virag, T., Nusser, N., Baker, D. L., Wang, D. A., Fabian, M. J., Brandts, B., Bender, K., Eickel, A., Malik, K. U., Miller, D. D., Desiderio, D. M., Tigyi, G., and Pott, L., Sphingosylphosphocholine is a naturally occurring lipid mediator in blood plasma: a possible role in regulating cardiac function via sphingolipid receptors.Biochem. J., 355, 189–197 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Ludwig, M. G., Vanek, M., Guerini, D., Gasser, J. A., Jones, C. E., Junker, U., Hofstetter, H., Wolf, R. M., and Seuwen, K., Proton-sensing G-protein-coupled receptors.Nature, 425, 93–98 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Mano, N., Oda, Y., Yamada, K., Asakawa, N., and Katayama, K., Simultaneous quantitative determination method for sphingolipid metabolites by liquid chromatography/ionspray ionization tandem mass spectrometry.Anal. Biochem., 244, 291–300 (1997).

    Article  PubMed  CAS  Google Scholar 

  • McKenzie, F. R., Mullaney, I., Unson, C. G., Spiegel, A. M., and Milligan, G., The use of anti-peptide antisera to probe interactions between receptors and guanine nucleotide binding proteins.Biochem. Soc. Trans., 16, 434–437 (1988).

    PubMed  CAS  Google Scholar 

  • Meloche, S., Landry, J., Huot, J., Houle, F., Marceau, F., and Giasson, E., p38 MAP kinase pathway regulates angiotensin II-induced contraction of rat vascular smooth muscle.Am. J. Physiol. Heart Circ. Physiol., 279, H741–751 (2000).

    PubMed  CAS  Google Scholar 

  • Meyer zu Heringdorf, D., Himmel, H. M., and Jakobs, K. H., Sphingosylphosphorylcholine-biological functions and mechanisms of action.Biochim. Biophys. Acta., 1582, 178–189 (2002).

    Google Scholar 

  • Meyer zu Heringdorf, D., van Koppen, C. J., and Jakobs, K. H., Molecular diversity of sphingolipid signalling.FEBS Lett, 410, 34–38 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Moolenaar, W. H., Bioactive lysophospholipids and their G. protein-coupled receptors.Exp. Cell Res., 253, 230–238 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Moraru, I.I., Popescu, L. M., Vidulescu, C., and Tzigaret, C., Antibodies against phospholipase C inhibit smooth muscle contraction induced by acetylcholine and histamine.Eur. J. Pharmacol., 138, 427–431 (1987).

    Article  PubMed  CAS  Google Scholar 

  • Morikage, N., Kishi, H., Sato, M., Guo, F., Shirao, S., Yano, T., Soma, M., Hamano, K., Esato, K., and Kobayashi, S., Cholesterol primes vascular smooth muscle to induce Ca2 sensitization mediated by a sphingosylphosphorylcholine- Rho-kinase pathway: possible role for membrane raft.Circ. Res., 99, 299–306 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Murakami, N., Yokomizo, T., Okuno, T., and Shimizu, T., G2A is a proton-sensing G-protein-coupled receptor antagonized by lysophosphatidylcholine.J. Biol. Chem., 279, 42484–42491 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Murata, Y., Ogata, J., Higaki, Y., Kawashima, M., Yada, Y., Higuchi, K., Tsuchiya, T., Kawainami, S., and Imokawa, G., Abnormal expression of sphingomyelin acylase in atopic dermatitis: an etiologic factor for ceramide deficiency?J. Invest. Dermatol., 106, 1242–1249 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Murthy, K. S., Coy, D. H., and Makhlouf, G. M., Somatostatin receptor-mediated signaling in smooth muscle. Activation of phospholipase C-beta3 by Gbetagamma and inhibition of adenylyl cyclase by Galphai1 and Galphao.J. Biol. Chem., 271, 23458–23463 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Ohmori, T., Yatomi, Y., Osada, M., Kazama, F., Takafuta, T., Ikeda, H., and Ozaki, Y., Sphingosine 1-phosphate induces contraction of coronary artery smooth muscle cells via S1P2.Cardiovasc Res., 58, 170–177 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Okajima, F. and Kondo, Y., Pertussis toxin inhibits phospholi- pase C activation and Ca2+ mobilization by sphingosylphos-phorylcholine and galactosylsphingosine in HL60 leukemia cells. Implications of GTP-binding protein-coupled receptors for lysosphingolipids.J. Biol. Chem., 270, 26332–26340 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Okamoto, H., Takuwa, N., Gonda, K., Okazaki, H., Chang, K., Yatomi, Y., Shigematsu, H., and Takuwa, Y., EDG1 is a functional sphingosine-1-phosphate receptor that is linked via a Gi/o to multiple signaling pathways, including phospholipase C activation, Ca2+ mobilization, Ras-mitogen-activated protein kinase activation, and adenylate cyclase inhibition.J. Biol. Chem., 273, 27104–27110 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Orlati, S., Porcelli, A. M., Hrelia, S., Van Brooklyn, J. R., Spiegel, S., and Rugolo, M., Sphingosine-1-phosphate activates phospholipase D in human airway epithelial cells via a G. protein-coupled receptor.Arch. Biochem. Biophys., 375, 69- 77 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Payne, D. M., Rossomando, A. J., Martino, P., Erickson, A. K., Her, J. H., Shabanowitz, J., Hunt, D. F., Weber, M. J., and Sturgill, T. W., Identification of the regulatory phosphorylationsites in pp42/mitogen-activated protein kinase (MAP kinase).Embo. J., 10, 885–892 (1991).

    PubMed  CAS  Google Scholar 

  • Racke, K., Hammermann, R., and Juergens, U. R., Potential role of EDG receptors and lysophospholipids as their endogenous ligands in the respiratory tract.Pulm. Pharmacol. Ther., 13, 99–114 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Rosenfeldt, H. M., Amrani, Y., Watterson, K. R., Murthy, K. S., Panettieri, R. A., Jr., and Spiegel, S., Sphingosine-1-phosphate stimulates contraction of human airway smooth muscle cells.Faseb J., 17, 1789–1799 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Seufferlein, T. and Rozengurt, E., Sphingosylphosphorylcholine rapidly induces tyrosine phosphorylation of p125FAK and paxillin, rearrangement of the actin cytoskeleton and focal contact assembly. Requirement of p21rho in the signaling pathway.J. Biol. Chem., 270, 24343–24351 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Shim, J. O., Shin, C. Y., Lee, T. S., Yang, S. J., An, J. Y., Song, H. J., Kim, T. H., Huh, I. H., and Sohn, U. D., Signal transduction mechanism via adenosine A1 receptor in the cat esophageal smooth muscle cells.Cell Signal., 14, 365–372 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Shin, C. Y., Lee, Y. P., Lee, T. S., Je, H. D., Kim, D. S., and Sohn, U. D., The signal transduction of endothelin-1-induced circular smooth muscle cell contraction in cat esophagus.J. Pharmacol. Exp. Ther., 302, 924–934 (2002a).

    Article  PubMed  CAS  Google Scholar 

  • Shin, C. Y., Lee, Y. P., Lee, T. S., Song, H. J., and Sohn, U. D., C(2)-ceramide-induced circular smooth muscle cell contraction involves PKC-epsilon and p44/p42 MAPK activation in cat oesophagus. Mitogen-activated protein kinase.Cell Signal., 14, 925–932 (2002b).

    Article  PubMed  CAS  Google Scholar 

  • Shirao, S., Kashiwagi, S., Sato, M., Miwa, S., Nakao, F., Kurokawa, T., Todoroki-lkeda, N., Mogami, K., Mizukami, Y., Kuriyama, S., Haze, K., Suzuki, M., and Kobayashi, S., Sphingosylphosphorylcholine is a novel messenger for Rho- kinase-mediated Ca2+ sensitization in the bovine cerebral artery: unimportant role for protein kinase C.Circ. Res., 91, 112–119 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Simonds, W. F., Goldsmith, P. K., Codina, J., Unson, C. G., and Spiegel, A. M., Gi2 mediates alpha 2-adrenergic inhibition of adenylyl cyclase in platelet membranes: in situ identification with G. alpha C-terminal antibodies.Proc. Natl. Acad. Sci. U.S.A., 86, 7809–7813 (1989).

    Article  PubMed  CAS  Google Scholar 

  • Sohn, U. D., Han, B., Tashjian, A. H., Jr., Behar, J., and Biancani, P., Agonist-independent, muscle-type-specific signal transduction pathways in cat esophageal and lower esophageal sphincter circular smooth muscle.J. Pharmacol. Exp. Ther., 273, 482–491 (1995).

    PubMed  CAS  Google Scholar 

  • Sohn, U. D., Harnett, K. M., Cao, W., Rich, H., Kim, N., Behar, J., and Biancani, P., Acute experimental esophagitis activates a second signal transduction pathway in cat smooth muscle from the lower esophageal sphincter.J. Pharmacol. Exp. Ther., 283, 1293–1304 (1997a).

    PubMed  CAS  Google Scholar 

  • Sohn, U. D., Zoukhri, D., Dartt, D., Sergheraert, C., Harnett, K. M., Behar, J., and Biancani, P., Different protein kinase C isozymes mediate lower esophageal sphincter tone and phasic contraction of esophageal circular smooth muscle.Mol Pharmacol, 51, 462–470 (1997b).

    PubMed  CAS  Google Scholar 

  • Song, H. J., Choi, T. S., Chung, F. Y., Park, S. Y., Ryu, J. S., Woo, J. G., Min, Y. S., Shin, C. Y., and Sohn, U. D., Sphingosine 1-phosphate-induced signal transduction in cat esophagus smooth muscle cells.Mol. Cells, 21, 42–51 (2006).

    PubMed  CAS  Google Scholar 

  • Spiegel, S. and Milstien, S., Sphingolipid metabolites: members of a new class of lipid second messengers.J. Membr. Biol., 146, 225–237 (1995).

    PubMed  CAS  Google Scholar 

  • Sueyoshi, N., Maehara, T., and Ito, M., Apoptosis of Neuro2a cells induced by lysosphingolipids with naturally occurring stereochemical configurations.J. Lipid. Res., 42, 1197–1202 (2001).

    PubMed  CAS  Google Scholar 

  • Todoroki-lkeda, N., Mizukami, Y., Mogami, K., Kusuda, T., Yamamoto, K., Miyake, T., Sato, M., Suzuki, S., Yamagata, H., Hokazono, Y. and Kobayashi, S., Sphingosylphosphorylcholine induces Ca(2+)-sensitization of vascular smooth muscle contraction: possible involvement of rho-kinase.FEBS Lett, 482, 85–90 (2000).

    Article  Google Scholar 

  • van Brooklyn, J., Letterle, C., Snyder, P., and Prior, T., Sphingosine- 1-phosphate stimulates human glioma cell proliferation through Gi-coupled receptors: role of ERK MAP kinase and phosphatidylinositol 3-kinase beta.Cancer. Lett, 181, 195- 204 (2002).

    Article  Google Scholar 

  • van Koppen, C. J., Meyer Zu Heringdorf, D., Zhang, C., Laser, K. T., and Jakobs, K. H., A distinct G(i) protein-coupled receptor for sphingosylphosphorylcholine in human leukemia HL-60 cells and human neutrophils.Mol. Pharmacol., 49, 956–961 (1996).

    PubMed  Google Scholar 

  • Wu, J., Spiegel, S., and Sturgill, T. W., Sphingosine 1-phosphate rapidly activates the mitogen-activated protein kinase path- way by a G. protein-dependent mechanism.J. Biol. Chem., 270, 11484–11488 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Xu, Y., Sphingosylphosphorylcholine and lysophosphatidyl- choline: G. protein-coupled receptors and receptor-mediated signal transduction.Biochim. Biophys. Acta., 1582, 81–88 (2002).

    PubMed  CAS  Google Scholar 

  • Xu, Y., Casey, G., and Mills, G. B., Effect of lysophospholipids on signaling in the human Jurkat T cell line.J. Cell Physiol., 163, 441–450 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Yamada, H., Strahler, J., Welsh, M. J., and Bitar, K. N., Activation of MAP kinase and translocation with HSP27 in bombesin- induced contraction of rectosigmoid smooth muscle.Am. J. Physiol., 269, G683–691 (1995).

    PubMed  CAS  Google Scholar 

  • Yang, S. J., An, J. Y., Shim, J. O., Park, C. H., Huh, I. H., and Sohn, U. D., The mechanism of contraction by 2-chloroade- nosine in cat detrusor muscle cells.J. Urol., 163, 652–658 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Zhou, H. and Murthy, K. S., Distinctive G. protein-dependent signaling in smooth muscle by sphingosine 1-phosphate receptors S1P1 and S1P2.Am. J. Physiol. Cell Physiol., 286, C1130–1138 (2004).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uy Dong Sohn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, Y.S., Song, H.J., Park, S.Y. et al. The signaling mechanism of the sphingosylphosphorylcholine-induced contraction in cat esophageal smooth muscle cells. Arch Pharm Res 30, 1608–1618 (2007). https://doi.org/10.1007/BF02977331

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02977331

Key words

Navigation