Skip to main content
Log in

Doxorubicin inhibits the production of nitric oxide by colorectal cancer cells

  • Research Articles
  • Articles
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Doxorubicin (DOX) is an active and broad spectrum chemotherapeutic agent. Increased inducible nitric oxide synthase (NOS) expression and/or activity have been reported in several human tumors. While the relationship between DOX treatment and the enzymatic activity of endothelial NOS has been well characterized, little is known about the effects of DOX on the expression of iNOS in human cancer cells. In the present study, we characterized the effects of DOX on the nitric oxide (NO) production by colorectal cancer cells, DLD-1. IFN-γ/IL-lβ (CM) increased the production of NO, whereas pretreatment of DOX inhibited the production of NO in response to CM in a dose dependent manner. The increased expressions of iNOS mRNA and protein by CM were completely blocked by DOX without affecting the iNOS mRNA stability. However, DOX activated nuclear factor-KB (NF-κB) in response to CM. Furthermore, the expression of inhibitor κBα was reduced by DOX in a dose dependent manner. Collectively, DOX inhibited the production of NO by DLD-1 cells, which is not linked to well known transcription factor, NF-κB. Therefore, further studies on the possible mechanisms of inhibitory effects of NO production by DOX would be worth pursuing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ambs, S., Hussain, S.P. and Harris, C.C., Interactive effects of nitric oxide and the p53 tumor suppressor gene in carcinogenesis and tumor progression.FASEB J., 11, 443–448 1997.

    PubMed  CAS  Google Scholar 

  • Ambs, S., Merriam, W.G., Bennett, W.R, Felley-Bosco, E., Ogunfusika, M.O., Oser, S.M., Klein, S., Shields, P.G., Billiar, T.R. and Harris, C.C., Frequent nitric oxide synthase-2 expression in human colorectal adenomas: Implication for tumor angiogenesis and colorectal cancer progression.Cancer Res., 58, 334–341 1998.

    PubMed  CAS  Google Scholar 

  • Bian, X., McAllister-Lucas, L.M., Shao, F., Schumacher, K.R., Feng, Z., Porter, A.G., Castle, V.P. and Opipari, A.W.J., NF-kappa B activation mediates doxorubicin-induced cell death in N-type neuroblastoma cells.J. Biol. Chem., 276, 48921–48929 2001.

    Article  PubMed  CAS  Google Scholar 

  • Brune, B., von Knethen, A. and Sandau, K.B., Nitric oxide and its role in apoptosis.Eur. J. Pharmacol., 351, 261–272 1998.

    Article  PubMed  CAS  Google Scholar 

  • Chu, S.C., Marks-Konczalik, J., Wu, H., Banks, T.C. and Moss, J., Analysis of the cytokine-stimulated human inducible nitric oxide synthase (iNOS) gene: characterization of differences between human and mouse iNOS promoters.Biochem. Biophys. Res. Commun., 248, 871–878 1998.

    Article  PubMed  CAS  Google Scholar 

  • Cobbs, C.S., Brenman, J.E., Aldape, K.D., Bredt, D.S. and Israel, M.A., Expression of nitric oxide synthase activity in human central nervous system tumors.Cancer Res., 55, 727–730 1995.

    PubMed  CAS  Google Scholar 

  • Das, K.C. and White, C.W., Activation of NF-kB by antineoplastic agents.J. Biol. Chem., 272, 14914–14920 1997.

    Article  PubMed  CAS  Google Scholar 

  • Denizot, F. and Lang, R., Rapid colorimetric assay for cell growth and survival: modifications to the tetrazolium dye procedure giving improved sensitivity and reliability.J. Immunol. Methods, 89, 271–277 1986.

    Article  PubMed  CAS  Google Scholar 

  • Dupraz, P., Cottet, S., Hamburger, F., Dolci, W., Felley-Bosco, E. and Thorens, B., Dominant negative MyD88 proteins inhibit interleukin-1 βinterferon-γ-mediated induction of nuclear factor κB-dependent nitrite production and apoptosis in b cells.J. Biol. Chem., 275, 37672–37678 2000.

    Article  PubMed  CAS  Google Scholar 

  • Foo, S. and Nolan, G., NF-kB to the rescue.Trends Genet., 15, 229–235 1999.

    Article  PubMed  CAS  Google Scholar 

  • Fukumura, D. and Jain, R.K., Role of nitric oxide in angiogenesis and microcirculation in tumors.Cancer Metastasis Rev., 17, 77–89 1998.

    Article  PubMed  CAS  Google Scholar 

  • Green, L., Wagner, D.A., Glogowski, J., Skipper, P. I., Wishnok, J.S. and Tannenbaum, S.R., Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids.Anal. Biochem., 126, 131–138 1982.

    Article  PubMed  CAS  Google Scholar 

  • Heitmeier, M.R., Scarim, A.L and Corbett, J.A., lnterferon-γ increases the sensitivity of islets of langerhans for inducible nitric oxide synthase expression induced by interleukin 1.J. Biol. Chem., 272, 13697–13704 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Ignao, L., Endothelium-derived nitric oxide: actions and properties.FASEB J., 3, 31–36 (1989).

    Google Scholar 

  • Inagaki, R., Taniguchi, T., Sakai, T., Hayashi, N., Ishii, Y. and Muramatsu, I., Anticancer drugs inhibit induction of NO synthase in ra.in vivo. Gen. Pharmacol., 32, 185–188 1999.

    Article  CAS  Google Scholar 

  • Jaiswal, M., LaRusso, N.F., Burgart, L.J. and Gores, G.J., Inflammatory cytokines induce DNA damage and inhibit DNA repair in cholangiocarcinoma cells by a nitric oxidedependent mechanism.Cancer Res., 60, 184–190 2000.

    PubMed  CAS  Google Scholar 

  • Jenkins, D.C., Charles, I.G., Thomsen, I.T., Moss, D.W., Homes, I.S., Baylis, S.A., Rhodes, P., Westmore, K., Emson, PA. and Moncada, S., Role of nitric oxide in tumor growth.Proc. Natl. Acad. Sci. U.S.A., 92, 4392–4396 1995.

    Article  PubMed  CAS  Google Scholar 

  • Kalivendi, S.V., Kotamraju, S., Zhao, H., Joseph, J. and Kalyanaraman, B., Doxorubicin-induced apoptosis associated with increased transcription of endothelial nitric-oxide synthase.Cancer Res., 276, 47266–47276 2001.

    CAS  Google Scholar 

  • Lee, H.Y., Lee, J., Kim, E.J., Han, J.W., Lee, H.W., Kang, Y.J. and Chang, K.C, Inhibition of lipopolysaccharide-induced inducible nitric oxide (iNOS) mRNA expression and nitric oxide production by higenamine in murine peritoneal macrophages.Arch. Pharm. Res., 22, 55–59 (1999).

    Article  PubMed  CAS  Google Scholar 

  • O’Neill, L.A.J., Towards an understanding of the signal transduction pathways for interleukin 1.Biochim Biophys Acta, 1266, 31–44 1995.

    Article  PubMed  Google Scholar 

  • Sherman, PA., Laubach, V.E., Reep, B.R. and Wood, E.R., Purification and cDNA sequence of an inducible nitric oxide synthase from a human tumor cell line.Biochemistry, 32, 11600–11605 1993.

    Article  PubMed  CAS  Google Scholar 

  • Siegert, A., Rosenberg, C., Schmitt, W.D., Denkert, C. and Hauptmann, S., Nitric oxide of human colorectal adenocarcinoma cell lines promotes tumor cell invasion.Br. J. Cancer, 86, 1310–1315 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Singal, PK. and lliskovic, N., Doxorubicin-induced cardiomyopathy.N. Engl. J. Med., 339, 900–905 1998.

    Article  PubMed  CAS  Google Scholar 

  • St-Denis, A., Chano, F., Tremblay, P., St-Pierre, Y. and Descoteaux, A., Protein kinase C-a modulates lipopolysaccharide induced functions in a murine macrophage cell line.J. Biol. Chem., 273, 32787–32792 1998.

    Article  PubMed  CAS  Google Scholar 

  • Thanos, D. and Maniatis, T., NF-kB: a lesson in family values.Cell, 80, 529–532 1995.

    Article  PubMed  CAS  Google Scholar 

  • Thomsen, L.L., Lawton, F.G., Knowles, R. G., Beesley, J.E., Riveras-Moreno, V. and Moncada, S., Nitric oxide synthase activity in human gynecological cancer.Cancer Res., 54, 1352–1354 1994.

    PubMed  CAS  Google Scholar 

  • Thomsen, L.L., Miles, D.W., Happerfield, L., Bobrow, L.G., Knowles, R.G. and Moncada, S., Nitric oxide syntase activity in human breast cancer.Br. J. Cancer, 72, 41–44 1995.

    PubMed  CAS  Google Scholar 

  • Xie, K. and Fidler, I.J., Therapy of cancer metastasis by activation of the inducible nitric oxide synthase.Cancer Metastasis Rev., 17, 55–75 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Zagozdzon, R., Giermasz, A., Golab, J., Stoklosa, T., Jalili, A. and Jakobisiak, M., The potentiated antileukemic effects of doxorubicin and interleukin-12 combination are not dependent on nitric oxide production.Cancer Lett., 147, 67–75 1999.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hoi Young Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jung, I.D., Lee, JS., Yun, S.Y. et al. Doxorubicin inhibits the production of nitric oxide by colorectal cancer cells. Arch Pharm Res 25, 691–696 (2002). https://doi.org/10.1007/BF02976946

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02976946

Key words