Skip to main content
Log in

Inhibitory mechanism of bromocriptine on catecholamine release evoked by cholinergic stimulation and membrane depolarization from the rat adrenal medulla

  • Research Articles
  • Articles
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

The purpose of this study was to determine whether bromocriptine affects the catecholamines (CA) secretion evoked in isolated perfused rat adrenal glands, by cholinergic stimulation, membrane depolarization and calcium mobilization, and to establish the mechanism of its action. The perfusion of bromocriptine (1~10 μM) into an adrenal vein, for 60 min, produced relatively dose-dependent inhibition in the secretion of catecholamines (CA) evoked by acetylcholine (ACh, 5.32 mM), DMPP (100 μM for 2 min), McN-A-343 (100 μM for 2 min), cyclopiazonic acid (CPA, 10 μM for 4 min) and Bay-K-8644 (10 μM for 4 min). High K+ (56 mM)-evoked CA release was also inhibited, although not in a dose-dependent fashion. Also, in the presence of apomorphine (100 μM), which is also known to be a selective D2-agonist, the CA secretory responses evoked by ACh, high potassium, DMPP, McN-A-343, Bay-K-8644 and cyclopiazonic acid were also significantly depressed. However, in adrenal glands preloaded with bromocriptine (3 μM) in the presence of metoclopramide (15 μM), a selective D2-antagonist, the CA secretory responses evoked by ACh, high potassium, DMPP, McN-A-343, Bay-K-8644 and cyclopiazonic acid considerably recovered as compared to that of bromocriptine only. Taken together, these results suggest that bromocriptine can inhibit the CA secretion evoked by stimulation of cholinergic receptors, as well as by membrane depolarization, in the perfused rat adrenal medulla. It is thought this inhibitory effect of bromocriptine may be mediated by inhibiting the influx of extracellular calcium and the release from intracellular calcium stores, through the activation of dopaminergic D2-receptors located in the rat adrenomedullary chromaffin cells. Furthermore, these findings also suggest that the dopaminergic D2-receptors may play an important role in regulating adrenomedullary CA secretion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anton, A.H., and Sayre, D.F., A study of the factors affecting the aluminum oxide trihydroxy indole procedure for the analysis of catecholamines.J. Pharmacol. Exp. Ther., 138, 360–375 (1962).

    PubMed  CAS  Google Scholar 

  • Artalejo, A.R., Ariano, M.A., Perlman, R.L., and Fox, A.P., Activation of facilitation calcium channels in chromaffin cells by D1 dopamine receptors through an AMP/protein kinase A-dependent mechanism.Nature, 348, 239–242 (1990).

    Article  PubMed  CAS  Google Scholar 

  • Artalejo, A.R., Garcia, A.G., Montiel, C., and Sanchez-Garcia, P., A dopaminergic receptor modulates catecholamine release from the cat adrenal gland.J. Physiol., 362, 359–368 (1985).

    PubMed  CAS  Google Scholar 

  • Bigornia, L., Allen, C.N., Jan, C.R., Lyon, R.A., Titeler, M., and Schneider, A.S., D2 dopamine receptors modulate calcium channel currents and catecholamine secretion in bovine adrenal chromaffin cells.J. Pharmacol. Expt. Ther., 252(2), 586–592 (1990).

    CAS  Google Scholar 

  • Bigornia, L., Suozzo, M., Ryan, K.A., Napp, D., and Schneider, A.S., Dopamine receptors on adrenal chromaffin cells modulate calcium uptake and catecholamine release.J. Neurochem., 51, 999–1006 (1988).

    Article  PubMed  CAS  Google Scholar 

  • Blanco, M., Hurtado, N., Jelambi, I., Perez, G., Carrillo, M., Gomez, J., Bravo, C., Gomez, H., Collet, H., and Velasco, M., Dopaminergic influence on cardiovascular responses to exercise stress in hypertensive subjects.Am. J. Ther., 4, 31–33 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Caron, M.G., Beaulieu, M., Raymond, V., Gagne, B., Drouin, J., Lefkowitz, R.J., and Labrie, F., Dopaminergic receptors in the anterior pituitary gland.J. Biol. Chem., 253, 2244–2253 (1978).

    PubMed  CAS  Google Scholar 

  • Challiss, R.A.J., Jones, J.A., Owen, P.J., and Boarder, M.R., Changes in inositol 1,4,5-trisphosphate and inositol 1,3,4,5- tetrakisphosphate mass accumulations in cultured adrenal chromaffin cells in response to bradykinin and histamine.J. Neurochem., 56, 1083–1086 (1991).

    Article  CAS  Google Scholar 

  • Cheek, T.R., O’Sullivan, A.J., Moreton, R.B., Berridge, M.J., and Burgoyne, R.D., Spatial localization of the stimulus-induced rise in cytosolic Ca2+ in bovine adrenal chromaffin cells: Distinct nicotinic and muscarinic patterns.FEBS. Lett., 247, 429–434 (1989).

    Article  PubMed  CAS  Google Scholar 

  • Collet, A.R., and Story, D.F., Is catecholamine release from the rabbit adrenal gland subject to regulation through dopamine receptors or β-adrenoceptors?Clin. Exp. Pharmacol. Physiol., 9, 436 (1982a).

    Google Scholar 

  • Collet, A.R., and Story, D.F., Release of3H-adrenaline from an isolated intact preparation of the rabbit adrenal gland: No evidence for release modulatory α-adrenoceptors.J. Auton. Pharmacol., 2, 25–34 (1982b).

    Article  Google Scholar 

  • Cooper, D.M.F., Bier-Laning, C.M., Halford, M.K., Ahlijanian, M.K., and Zahniser, N.R., Dopamine acting through D2 receptors inhibits rat striatal adenylate cyclase by a GTP- dependent process.Mol. Pharmacol., 29, 113–119 (1986).

    PubMed  CAS  Google Scholar 

  • Dahmer, M.K., and Senogles, S.E., Differential inhibition of secretagogue-stimulated sodium uptake in adrenal chromaffin cells by activation of D4 and D5 dopamine receptors.J. Neurochem., 67, 1960–1964 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Damase-Michel, C., Montastruc, J.L., Geelen, G., Saint-Blanquat, G.D., and Tran, M.A., Effect of quinpirole a specific dopamine DA2 receptor agonist on the sympathoadrenal system in dogs.J. Pharmacol. Expt. Ther., 252(2), 770–777 (1990).

    CAS  Google Scholar 

  • Damase-Michell, C., Montastruc, J.L., and Tran, M.A., Dopaminergic inhibition of catecholamine secretion from adrenal medulla is mediated by D2-like but not D1-like dopamine receptors.Clin. Expt. Pharmacol. Physiol., 26(suppl.), S67-S68 (1999).

    Google Scholar 

  • De Vliefer, T.A., Lodder, J.C., Werkman, T.R., and Stoof, J.C., Dopamine receptor stimulation has multiple effects on ionic currents in neuroendocrine cells of the pond snailLymnaea stagnalis.(Abstr) Neuroscience Lett [Suppl]., 22, S418 (1985).

    Google Scholar 

  • Fohr, K.J., Ahnert-Hilger, G., Stecher, B., Scott, J., and Gratzl, M., GTP and Ca2+ modulate the inositol 1,4,5-trisphosphate-dependent Ca2+ release in streptolysin O-permeabilized bovine adrenal chromaffin cells.J. Neurochem., 56, 665–670 (1991).

    Article  PubMed  CAS  Google Scholar 

  • Forsberg, E.J., Rojas, E., and Pollard, H.P., Muscarinic receptor enhancement of nicotinic-induced catecholamine secretion may be mediated by phosphoinositide metabolism in bovine adrenal chromaffin cells.J. Biol. Chem., 261, 4915–4920 (1986).

    PubMed  CAS  Google Scholar 

  • Garcia, A.G., Sala, F., Reig, J.A., Viniegra, S., Frias, J., Fonteriz, R., and Gandia, L., Dihydropyridine Bay-K-8644 activates chromaffin cell calcium channels.Nature, 309, 69–71 (1984).

    Article  PubMed  CAS  Google Scholar 

  • Goerger, D.E., and Riley, R.T., Interaction of cyclopiazonic acid with rat skeletal muscle sarcoplasmic reticulum vesicles. Effect on Ca2+ binding and Ca2+ permeability.Biochem. Pharmacol., 38, 3995–4003 (1989).

    Article  Google Scholar 

  • Gonzales, M.C., Artalejo, A.R., Montiel, C., Hervas, P.P., and Garcia, A.G., Characterization of a dopaminergic receptor that modulates adrenomedullary catecholamine release.J. Neurochem., 47, 382–388 (1986).

    Article  Google Scholar 

  • Huettl, P., Gerhardt, G.A., Browning, M.D., and Masserano, J.M., Effects of dopamine receptor agonists and antagonists on catecholamine release in bovine chromaffin cells.J. Pharmacol. Expt. Ther., 257(2), 567–574 (1991).

    CAS  Google Scholar 

  • Kebabian, J. W., and Calne, D. B., Multiple receptors for dopamine.Nature, 277(5692), 93–96 (1979).

    Article  PubMed  CAS  Google Scholar 

  • Kebabian, J. W., Augi, T., van Oene, J. C., Shigematsu, K., and Saavedra, J. M., The dopamine receptor: New perspectives.Trends. Pharmacol. Sci., 7, 96–99 (1986).

    Article  CAS  Google Scholar 

  • Kim, K.T., and Weathead, E.W., Cellular responses of Ca2+ from extracellular and intracellular sources are different as shown by simultaneous measurements of cytosolic Ca2+ and secretion from bovine chromaffin cells.Proc. Natl. Acad. Sci. USA., 86, 9881–9885 (1989).

    Article  PubMed  CAS  Google Scholar 

  • Lim, D.Y., Kim, C.D., and Ahn, K.W., Influence of TMB-8 on secretion of catecholamines from the perfused rat adrenal glands.Arch. Pharm. Res., 15(2), 115–125 (1992).

    Article  CAS  Google Scholar 

  • Lim, D.Y., Kim, K. H., Choi, C.H., Yoo, H.J., Choi, D.J., and Lee, E.H., Studies on secretion of catecholamines evoked by metoclopramide of the rat adrenal gland.Korean J. Pharmacol., 25(1), 31–42 (1989).

    CAS  Google Scholar 

  • Lim, D.Y., Yoon, J.K., and Moon, B., Interrelationship between dopaminergic receptors and catecholamine secretion from the rat adrenal gland.Korean J. Pharmacol., 30(1), 87–100 (1994).

    CAS  Google Scholar 

  • Luchsinger, A., Grilli, M., Forte, P., Morales, E., and Velasco, M., Metoclopramide blocks bromocriptine-induced antihypertensive effect in hypertensive patients.International J. Clin. Pharmacol. Ther., 3, 509–512 (1995).

    Google Scholar 

  • Lyon, R.A., Titeler, M., Bigornia, L., and Schneider, A.S., D2 dopamine receptors on bovine chromaffin cell membranes: identification and characterization by [3H] N-methylspiperone binding.J. Neurochem., 48, 631–635 (1987).

    Article  PubMed  CAS  Google Scholar 

  • Malgaroli, A., Vallar, L., Elahi, F.R., Pozzan, T., Spada, A., and Meldolesi, J., Dopamine inhibits cytosolic Ca2+ increases in rat lactotroph cells.J. Biol. Chem., 262, 13920–13927 (1987).

    PubMed  CAS  Google Scholar 

  • Memo, M., Carboni, E., Trabucchi, M., Carruba, M.O., and Spano, P.F., Dopamine inhibition of neurotensin-induced increase in Ca2+ influx intra rat pituitary cells.Brain Res., 347, 253–257(1985).

    Article  PubMed  CAS  Google Scholar 

  • Merritt, J.E., and Brown, B.L., The possible involvement of both calcium and cyclic AMP in the dopaminergic inhibition of prolactin secretion.Life Sci., 35, 707–711 (1984).

    Article  PubMed  CAS  Google Scholar 

  • Montastruc, J.L., Gaillard, G., Rascol, O., Tran, M.A., and Montastruc, P., Effect of apomorphine on adrenal medullary catecholamine levels.Fundam. Clin. Pharmacol., 3(6), 665–670(1989).

    PubMed  CAS  Google Scholar 

  • Montiel, C., Artalejo, A. R., Bermejo, P.M., and Sanchez-Garcia P., A dopaminergic receptor in adrenal medulla as a possible site of action for the droperidol-evoked hypertensive response.Anesthesiology, 65(5), 474–479 (1986).

    Article  PubMed  CAS  Google Scholar 

  • ODowd, B. F., Structures of dopamine receptors.J. Neurochem., 60(3), 804–816 (1993).

    Article  CAS  Google Scholar 

  • Quick, M., Bergeron, L., Mount, H., and Philte, J., Dopamine D2 receptor binding in adrenal medulla: characterization using [3H] spiperone.Biochem. Pharmacol., 36, 3707–3713 (1987).

    Article  Google Scholar 

  • Roquebert, J., Alaoui, K., Moran, and Benito, A., Cardiovascular effects of bromocriptine in rats: role of peripheral adrenergic and dopaminergic receptors.J. Auton. Pharmacol., 10, 85–96 (1990).

    Article  PubMed  CAS  Google Scholar 

  • Schettini, G., Cronin, M.J., and Macleod, R.M., Adenosine 3’, 5’-monophosphate(cAMP) and calcium calmodulin interrelation in the control of prolactin secretion: evidence for dopamine inhibition of cAMP accumulation and prolactin release after calcium mobilization.Endocrinology, 112, 1801–1807 (1983).

    Article  PubMed  CAS  Google Scholar 

  • Schramm, M., Thomas, G., Towart, R., and Franckowiak, G., Novel dihydropyridines with positive isotropic action through activation of Ca2+ channels.Nature, 303, 535–537 (1982).

    Article  Google Scholar 

  • Seidler, N.W., Jona, I., Vegh, N., and Martonosi, A., Cyclopiazonic acid is a specific inhibitor of the Ca2+-ATPase of sarcoplasimc reticulum.J. Biol. Chem., 264, 17816–17823 (1989).

    PubMed  CAS  Google Scholar 

  • Sibley, D. R., and Monsma, F. J., Molecular biology of dopamine receptors.Trends Pharmacol. Sci., 13(2), 61–69 (1992).

    Article  PubMed  CAS  Google Scholar 

  • Sorimachi, M., Yamagami, K., and Nishimura, S., A muscarinic receptor agonist mobilizes Ca2+ from caffeine and inositol-1,4,5-trisphosphate-sensitive Ca2+ stores in cat adrenal chromaffin cells.Brain Res., 571, 154–158 (1992).

    Article  PubMed  CAS  Google Scholar 

  • Suzuki, M., Muraki, K., Imaizumi, Y., and Watanabe, M., Cyclopiazonic acid, an inhibitor of the sarcoplasmic reticulum Ca2+-pump, reduces Ca2+-dependent K+ currents in guineapig smooth muscle cells.Br. J. Pharmacol., 107, 134–140 (1992).

    PubMed  CAS  Google Scholar 

  • Tallarida, R.J., and Murray, R.B.,Manual of pharmacologic calculation with computer programs. 2nd Ed. New York Speringer-Verlag, pp. 131–136 (1987).

    Google Scholar 

  • Uceda, G., Artalejo, A.R., Lopez, M.G., Abad, F., Neher, E., and Garcia, A.G., Ca2+-activated K+ channels modulated muscarinic secretion in cat chromaffin cells.J. Physiol., 454, 213–230 (1992).

    PubMed  CAS  Google Scholar 

  • Vallar, L., and Meldolesi, J., Mechanisms of signal transduction at the dopamine D2 receptor.Trends Pharmacol. Sci., 10(2), 74–77(1989).

    Article  PubMed  CAS  Google Scholar 

  • Van Loon, G. R., Sole, M. J., Bain, J., and Ruse, J. L., Effects of bromocriptine on plasma catecholamines in normal men.Neuroendocrinology, 28, 425–434 (1979).

    Article  PubMed  Google Scholar 

  • Wada, Y., Satoh, K., and Taira, N., Cardiovascular profile of Bay-K-8644, a presumed calcium channel activator in the dog.Naunyn-Schmiedebergs. Arch. Pharmacol., 328, 382–387 (1985).

    Article  PubMed  CAS  Google Scholar 

  • Wakade, A.R., Studies on secretion of catecholamines evoked by acetylcholine or transmural stimulation of the rat adrenal gland.J. Physiol., 313, 463–480 (1981).

    PubMed  CAS  Google Scholar 

  • Ziegler, M.G., Lake, C.R., Williams, A.C., Teychenne, P.F., Shoulson, I., and Steinsland, O., Bromocriptine inhibits norepinephrine release.Clin. Pharmacol. Ther., 25, 137–142 (1979).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Yoon Lim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lim, DY., Lee, YG. & Kim, lH. Inhibitory mechanism of bromocriptine on catecholamine release evoked by cholinergic stimulation and membrane depolarization from the rat adrenal medulla. Arch Pharm Res 25, 511–521 (2002). https://doi.org/10.1007/BF02976611

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02976611

Key words

Navigation