Skip to main content
Log in

Enantioselective preparation of metoprolol and its major metabolites

  • Research Articles
  • Medicinal Chemistry & Natural Products
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

To obtain the standard compounds of metoprolol for a pharmacokinetic study, a convenient synthetic procedure to prepare enantiomers of metoprolol (3a) and its major metaboites, 2-4-(2-hydroxy-3-isopropylamino)propoxyphenylethanol (3b) and 4-(2-hydroxy-3-isopropylamino) pro-poxyphenylacetic acid (4), was developed from their respective starting materials, 4-(2-methoxyethyl)phenol (1a), 4-(2-hydroxyethyl)phenol (1b) and methyl 4-hydroxyphenylacetate (1c). These phenolic compounds (1a, b, c) were convertedin situ to their corresponding phenoxides with sodium hydroxide treatment followed by (R)- or (S)-epichlorohydrin treatment. The resulting epoxides2 were transformed to3 through reaction with isopropylamine. Ester3c was hydrolyzed to the metabolite4. Measured using the HPLC method on chiral column without any derivatization, the optical purity of enantiomers of metoprolol and o-demethylated metabolite3b ranged between 96–99% ee and that of enantiomers of carboxylic acid metabolite4 ranged 91% ee.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Borg, K. O., Carlsson, E., Hoffmann, K. J., Jonsson, T. E., Thorin, H. and Wallin, B., Metabolism of metoprolol-[3H] in man, the dog and the rat.Acta Pharmacol. Toxicol., 36, 125–35 (1975).

    CAS  Google Scholar 

  • Chiu, F. C., Damani, L. A., Li, R. C. and Tomlinson, B., Efficient high-performance liquid chromatographic assay for the simultaneous determination of metoprolol and two main metabolites in human urine by solid-phase extraction and fluorescence detection.J. Chromatogr. B, 696, 69–74 (1997).

    Article  CAS  Google Scholar 

  • Gurjar, M. K., Sadalapure, K., Adhikari, S., Sarma, B. V. N. B. S., Talukdar, A. and Chorghade, M. S., Kinetic Resolution of Aryl Glycidyl Ethers: a Practical Synthesis of Optically Pure β-Blocker-S-metoprolol.Heterocycles, 48, 1471–6 (1998).

    Article  CAS  Google Scholar 

  • Iseki, K., Oishi, S., Sasai, H. and Shibasaki, M., Synthesis and biological evaluation of a fluorinated analog of the β-adrenergic blocking agent, metoprolol.Bioorganic & medicinal chem. letters, 7, 1273–4 (1997).

    Article  CAS  Google Scholar 

  • Johnsson, G. and Regardh, C. G., Clinical pharmacokinetics of β-adrenoreceptor blocking drugs.Clin. Pharmacokinet., 1 (4), 233–63 (1976).

    PubMed  CAS  Google Scholar 

  • Kai, T., Isami, T., Kobata, K., Kurosaki, Y., Nakayama, T. and Kimura, T., Keratinized epithelial transport of β-blocking agents. I. Relationship between physicochemical properties of drugs and the flux across rat skin and hamster cheek pouch.Chem Pharm Bull., 40(9), 2498–504 (1992)

    PubMed  CAS  Google Scholar 

  • Keding, B. I., Lindqvist, B. A. R. and Samuelsson, B. B., Process for S-metoprolol via oxazolidin-2-one, U. S. Patent No. 5,034,535 (1991).

  • Li, F., Cooper, S. F. and Cote, M., Determination of the enantiomers of metoprolol and its major acidic metabolite in human urine by high-performance liquid chromatography with fluorescence detection.J. Chromatogr. B, 668(1), 67–75 (1995).

    Article  CAS  Google Scholar 

  • Matsuki, Y., Ito, T., Komatsu, S. and Nambara, T., Studies on the metabolism of atenolol. Characterization and determination of a new urinary metabolite in the rat.Chem. Pharm. Bull., 30(1), 196–201 (1982).

    PubMed  CAS  Google Scholar 

  • Murthy, S. S., Shetty, H. U., Nelson, W. L., Jackson, P. R. and Lennard, M. S., Enantioselective and diastereo-selective aspects of the oxidative metabolism of metoprolol.Biochem. Pharmacol. 40, 1637–44 (1990).

    Article  PubMed  CAS  Google Scholar 

  • Nathanson, J. A., Stereospecificity of β-adrenergic antagonists: R-enantiomers show increased selectivity for β2-receptors in ciliary process.J. Pharmacol. Exp. Ther., 245(1), 94–101 (1988).

    PubMed  CAS  Google Scholar 

  • Phillips, G. T., Robertson, B. W. Bertola, M. A., Koger, H. S, Marx, A. F. and Watts, P. D., Process for producing 4-(2-methoxyethyl)-phenyl-glycidyl ether and/or metoprolol, U. S. Patent No. 4, 956, 284 (1990).

  • Sasai, H., Suzuki, T., Itoh, N. and Shibasaki, M., Catalytic Asymmetric Synthesis of Propranolol and Metoprolol Using a La-Li-BINOL Complex.Applied Organometallic Chemistry, 9(5), 421 (1995).

    Article  CAS  Google Scholar 

  • Shetty, H. U. and Nelson, W. L., Chemical aspects of metoprolol metabolism. Asymmetric synthesis and absolute configuration of the 3-[4-(1-hydroxy-2-methoxyethyl) phenoxy]-1-(isopropylamino)-2-propanols the diastereomeric benzylic hydroxylation metabolites.J. Med. Chem., 31(1), 55–9 (1988).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang-Hun Jung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jung, SH., Pham Tuan Linh, Lim, HK. et al. Enantioselective preparation of metoprolol and its major metabolites. Arch Pharm Res 23, 226–229 (2000). https://doi.org/10.1007/BF02976449

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02976449

Key words

Navigation