Skip to main content
Log in

Effects of ginsenosides on the glutamate release and intracellular calcium levels in cultured rat cerebellar neuronal cells

  • Research Articles
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

These studies were designed to examine the effects of ginsenosides on glutamate neurotransmission. In primary cultures of rat cerebellar granule cells, ginsenosides (Rb1, Rc and Rg1, 500 μg/ml) increased glutamate release which was measured by HPLC, but Re did not show an elevation of glutamate release. However, all of these ginsenosides down-regulated N-methyl-D-aspartate (NMDA)-induced glutamate release. Rc strongly increased glutamate release and elevated intracellular calcium concentrations (Ca2+ i) which was measured by ratio fluorometry with FURA-2 AM. These, results indicate that ginsenosides have a homeostatic effect on glutamate neurotransmission, and there is a structure-function relationship among the ginsenosides tested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References Cited

  • Balazs, R., Jorgensen, O. S. and Hack, N., N-methyl-D-aspartate promotes the survival of cerebellar granule cells in culture.Neurosci., 27, 437–451 (1988).

    Article  CAS  Google Scholar 

  • Cai, Z. and McCaslin, P. P., Amitriptyline, desipramine, cyproheptadine and carbamazepine, in concentrations used therapeutically, reduced kainate-and N-methyl-D-aspartate-induced intracellular Ca2+ levles in neuronal culture.Eur. J. Pharmacol., 219, 53–57 (1992).

    Article  PubMed  CAS  Google Scholar 

  • Choi, D. W., Calcium mediated neurotoxicity: relationship to specific channel types and role in ischemic damage.Trends Neurosci., 11, 465–469 (1988).

    Article  PubMed  CAS  Google Scholar 

  • Collingridge, G. L. and Bliss, T. V., NMDA receptorstheir role in long-term potentiation.Trends Neurosci., 10, 288–293 (1987).

    Article  CAS  Google Scholar 

  • Ellison, D. W., Beal, M. F. and Martin, J. B., Amino acid neurotransmitters in postmortem human brain analyzed by high performance liquid chromatography with electrochemical detection.J. Neurosci. Metho., 19, 305–315 (1987).

    Article  CAS  Google Scholar 

  • Flott B. and Seifert, W., Characterization of glutamate uptake systems in astrocyte primary cultures from rat brain.Glia, 4, 293–304 (1991).

    Article  PubMed  CAS  Google Scholar 

  • Greenamyre, J. T. and Young, A. B., Excitatory amino acids and Alzheimer’s disease.Neurobiol. Aging, 10, 593–602 (1989).

    Article  PubMed  CAS  Google Scholar 

  • Grynkiewicz, G., Poenie, M. and Tsien, R. Y., A new generation of Ca2+ indicators with greatly improved fluorescence properties.J. Biol. Chem., 260 3440–3450 (1985).

    PubMed  CAS  Google Scholar 

  • Kata, T., Miyata, T., Uruno, T., Sako, I. and Kinoshita, A., Chemico-pharmacological studies on saponins of panax ginseng.Arzneim. Forsch. (Drug Res.) 25, 343–347 (1975).

    Google Scholar 

  • Kurk, Z. L. and Pycock, C. J., Excitatory amino acids: L-glutamic acid and L-aspartic acid, InNeurotransmitters and Drugs Chapman & Hall, London, 1991, pp. 159–168.

    Google Scholar 

  • Lerma, J., Herranz, A. S., Herreras, O., Abraira, V. and Martin Del Rio, R., In vivo determination of extracellular concentration of amino acids in the rat hippocampus; a method based on brain dialysis and computerized analysis.Brain Res., 384, 145–155 (1986).

    Article  PubMed  CAS  Google Scholar 

  • Mayer, M. L. and Westbrook, G. L., The physiology of excitatory amino acids in the vertebrate central nervous system.Prog. Neurobiol., 28, 197–276 (1987).

    Article  PubMed  CAS  Google Scholar 

  • McCaslin, P. P. and Morgan, W. W., Cultured cerebellar cells as an in vitro model of excitatory amino acid receptor function.Brain Res., 417, 380–384 (1987).

    Article  PubMed  CAS  Google Scholar 

  • McIntosh, T. K., Vink, R., Soares, H., Hayes, R. and Simon, R., Effect of noncompetitive blockage of N-methyl-D-aspartate receptors on neurochemical sequelae of experimental brain injury.J. Neurochem., 55, 1170–1179 (1990).

    Article  PubMed  CAS  Google Scholar 

  • Meyer, F. B., Calcium, neuronal hyperexcitability and ischemic injury.Brain Res. Rev., 14, 227–243 (1989).

    Article  PubMed  CAS  Google Scholar 

  • Muller, D., Joly, M. and Lynch, G.. Contributions of quisqualate and NMDA receptors to the induction and expression of LTP.Science, 242, 1694–1697 (1988).

    Article  PubMed  CAS  Google Scholar 

  • Panter, S. S., Yum, S. W. and Faden, A. I., Alteration in extracellular amino acids traumatic spinal cord injury.Ann. Neurol., 27, 96–99 (1990).

    Article  PubMed  CAS  Google Scholar 

  • Rothman, S. M. and Olney, J. W., Glutamate and the pathopysiology of hypoxic-ischemic brain damage.Ann. Neurol., 19, 105–111 (1986).

    Article  PubMed  CAS  Google Scholar 

  • Saito, H., Suba, K., Schwab, M. and Thoenen, H., Potentiation of the NGF-mediated nerve fiber outgrowth by ginsenoside Rb1 in organ cultures of chick dorsal root ganglia.Japan J. Pharmacol., 27, 445–451 (1977).

    Article  CAS  Google Scholar 

  • Scheufler, E., Urenjak, J., Osikowska-Evers, B., Beile, A., Guttmann, T., Wilffert, B., Tegtmeier, F. and Peters, T., Ouabain-induced changes of calcium and potassium in slices of hippocampus of the rat: Comparison to hypoxia and effect of R 56865.Neuropharmacol., 31, 481–486 (1992).

    Article  CAS  Google Scholar 

  • Sloviter, R. S. and Dempster, D. W., Epileptic brain damage is replicated qualitatively in the rat hippocampus by central injection of glutamte or aspartate but not GABA or acethylcholine.Brain Res. Bull., 15, 39–60 (1985).

    Article  PubMed  CAS  Google Scholar 

  • Stancheva, S. L. and Alova, L. G., Ginsenoside Rg1 inhibits the brain cAMP phosphodiesterase activity in young and aged rats.Gen. Pharmacol., 24, 1459–1462 (1993).

    PubMed  CAS  Google Scholar 

  • Takagi, K., Saito, H. and Nabata, H., Pharmacological studies of panax ginseng root; Estimation of pharmacological actions of panax ginseng root.Japan J. Pharmacol., 22, 245–259 (1972).

    Article  CAS  Google Scholar 

  • Taylor, C. P., Geer, J. J. and Burke, S. P., Endogenous extracellular glutamate accumulation in rat neocortical cultures by reversal of the transmembrane sodium gradient.Neurosci. Lett. 145, 197–200 (1992).

    Article  PubMed  CAS  Google Scholar 

  • Tsien, R. Y., Fluorescent indicators of ion concentration, In Taylor, D. L. and Wand, Y. L. (Eds.),Methods in Cell Biology, Academic Press, San Diego, 1989, pp. 127–156.

    Google Scholar 

  • Wyler, A. R., Nadi, N. S. and Porter, R. J., Acetylcholine, GABA, benzodiazepin, glutamate receptors in the temporal lobe of epileptic patients.Neurology, 37, (suppl. 1), 103 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oh, S., Kim, H.S. & Seong, Y.H. Effects of ginsenosides on the glutamate release and intracellular calcium levels in cultured rat cerebellar neuronal cells. Arch. Pharm. Res. 18, 295–300 (1995). https://doi.org/10.1007/BF02976321

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02976321

Key words

Navigation