Skip to main content
Log in

Potential antitumor α-methylene-ψ-butyrolactone-bearing nucleic acid bases. 2. Synthesis of 5′-methyl-5′-[2-(5-substituted uracil-1-yl)ethyl]-2′-oxo-3′-methylenetetrahydrofurans

  • Research Articles
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Ten, heretofore unreported, 5′-methyl-5′-[2-(5-substituted uracil-1-yl)ethyl)]-2′-oxo-3′-methylenetetrahydrofurans (H, F, Cl, Br, I, CH3, CH3, CH2CH3, CH=CH2, SePh) (7a-j) were synthesized and evaluated against four cell lines (K-562, FM-3A, P-388 and U-937). For the preparation of α-methylene-γ-butyrolactone-linked to 5-substituted uracils (7a-j), the convenient Reformasky type reaction was employed which involves the treatment of ethyl α-(bromomethyl)acrylate and zinc with the respective 1-(5-substituted uracil-1-yl)-3-butanone (6a-j). The 5-substituted uracil ketones (6a-j) were directly obtained by the respective Michael type reaction of vinyl methyl ketone with the K2CO3 (or NaH)-treated 5-substituted uracils (5a-j) in the presence of acetic acid in the DMF solvent. The α-methylene-γ-butyrolactone compounds showing the most significant antitumor activity are7e, 7f, 7h and7j (inhibitory concentration (IC50) ranging from 0.69 to 2.9 μg/ml), while7b, 7g and7i have shown moderate to significant activity. The compounds7a, 7c and7d were found to be inactive. The synthetic intermediate compounds6a-j were also screened and found marginal to moderate activity where compounds6b and6g showed significant activity (IC50:0.4∼2.8 μg/ml).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References Cited

  • Carmichael, J., DeGraff, W. G., Gazdar, A. F., Minna, J. D. and Mitchell, J. B., Evaluation of a Tetrazolium-based Semiautomated Colorimetric Assay;Assessment of Chemosensitivity Testing, Cancer Res., 47, 936–940 (1987).

    PubMed  CAS  Google Scholar 

  • Cassady, J. M., Bryn, S. R., Stamos, I. K., Evans, S. M., McKenzie, A., Potential Antitumor Agents. Synthesis, Reactivity and Cytotoxicity of α-Methylene Carbonyl Compounds.J. Med. Chem., 21, 815–819 (1978).

    Article  PubMed  CAS  Google Scholar 

  • Dehal, S. S., Marples, B. A., Stretton, R. J., Traynor, J. R., Steroidal α-Methylenes as Potential Antitumor Agents,J. Med. Chem., 23, 90–92 (1980).

    Article  PubMed  CAS  Google Scholar 

  • Farina, V., Hauck, S. I., Palladium-Catalyzed Approach to 5-Substituted Uracil and Uridine Derivatives,Synlett., 157–159 (1991).

  • Ferris, A. F., The Action of Mineral acid on Diethyl bis(hydroxymethyl) malonate.J. Org. Chem., 20, 780–787 (1955).

    Article  CAS  Google Scholar 

  • For part 1., See Kim, J. C., Kim, J. A., Kim, S. H., Park, J. I., Kim, S. H., Choi, S. K. and Park, W. O., Synthesis and Antitumor Evaluation of α-methylene-γ-butyrolactone-Linked to 5-Substituted Uracil Nucleic Acid Bases.Arch. Pham. Res., 19, 235–239 (1996).

    Article  CAS  Google Scholar 

  • Fursteer, A., Recent Advancements in the Reformatsky Reaction. Synthesis, 571–589 (1989).

  • Gammill, R. B., Wilson, C. A., Bryson, T. A., Synthesis of α-Methylene-γ-butyrolactons.Synthetic Communication, 5, 245–268 (1975).

    Article  CAS  Google Scholar 

  • Goudgaon, N. H., Nafuib, F. N. H., el Kouni, M. H., Schinazi, R. F., Phenyselenenyl-and Phenylthio-Substituted Pyrimidines as Inhibitors of Dihydrouracil Dehydrogenase and Uridine Phosphorylase,J. Med. Chem. 36, 4250–4254 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Grieco, P. A., Methods for the Synthesis of α-Methylene Lactones. Synthesis, 67–77 (1975).

  • Hall, I. H., Lee, K-H, Mar, E. C., Starnes, C. O., Waddel, T. G., Antitumor Agents.21. A Proposed Mechanism for Inhibition of Cancer Growth by Tenulin and Helenalin and Related Cyclopentenones.J. Med. Chem., 20, 333–337 (1977).

    Article  PubMed  CAS  Google Scholar 

  • Heindel, N. D., Minatelli, J. A., Synthesis and Antibacterial and Anticancer Evaluations of α-Methylene-γ-butyrolactones.J. Pharm. Sci., 70, 84–86 (1981).

    Article  PubMed  CAS  Google Scholar 

  • Kim, J. C. and Han, S. H., Nitrosation Products ofN-Acyl-N-Substituted Phenyl Hydazines.Bull. Korean Chem. Soc., 15, 173–176 (1994a).

    CAS  Google Scholar 

  • Kim, J. C., Bae, S. S., Kim, S. H. and Kim, S. H. Synthesis andIn Vitro Cytotoxicity of Homologous Series of 9-ω-(N′-methyl-N′-nitrosoueido)alkyl] purines.Korean J. Med. Chem., 4, 66–72 (1994b).

    CAS  Google Scholar 

  • Kim, J. C., Dong, E. S., Ahn, J. W., Kim, S. H., Synthesis and Evaluation of Antitumor Activity of a Homologous Series of 1-(ω-cyanoalkyl) and 1,3-bis (ω-cyanoalkyl)uracil Nucleoside Analogues.Arch. Pharm. Res., 17, 135–138 (1994c).

    Article  CAS  Google Scholar 

  • Kim, J. C., Dong, E. S., Kim, J. A., Kim, S. H., Park, J. I. and Kim, S. H., Synthesis and Antitumor Evaluation of Acyclic 5-Substituted Pyrimidine Nucleoside Analogues,Korean J. Med. Chem., 4, 111–118 (1994d).

    CAS  Google Scholar 

  • Kim, J. C., Dong, E. S., Park, J. I., Bae, S. D. and Kim, S. H., 5-Substituted Pyrimidine Acyclic Nucleoside Analogues. 1-Cyanomethyl- and 1-(4-Cyanobutyl)-5-substituted uracils as Candidate Antitumor Agents.Arch. Pharm. Res., 17, 480–482 (1994f).

    Article  PubMed  CAS  Google Scholar 

  • Kim, J. C., Kim, M. Y., Kim, S. H., Choi, S. H. Synthesis of a Series of cis-Diamminedichloroplatinum (II) Complexes Linked to Uracil and Uridine as Candidate Antitumor Agents.Arch. Pharm. Res., 18, 449–453 (1995).

    Article  CAS  Google Scholar 

  • Kim, J. C., Lee, Y. H., Synthesis and Evaluation of Uracil-6-carboxaldehyde Schiff Base as Potential Antitumor Agents.Korean J. Med. Chem., 2, 64–69 (1992).

    CAS  Google Scholar 

  • Kim, J. C., Lim, Y. G., Min, B. T. and Park, J. I. Preparation ofN-Substituted Anilino-N-Methyl-N-Nitrosoureas as Candidate Antitumor Agents.Arch. Pharm. Res., 17, 420–423 (1994e).

    Article  PubMed  CAS  Google Scholar 

  • Kim, J. C., Park, J. I., Hur, T. H. Synthesis of 4-Azacholestane Derivatives Containing Nitrosoureido Function as Antitumor Activity.Bull. Korean Chem. Soc., 14, 176–178 (1993a).

    CAS  Google Scholar 

  • Kim, J. C., Peak, H. D., Moon, S. H., Kim, S. H., Synthesis of Steroidal Cyclophosphamide, 2-bis(2-chloroethyl)amino-2-oxo-6-(5α-cholestanyl)-1,3, 2-oxa-zaphorinane.Bull. Korean Chem. Soc., 14, 318–319 (1993b).

    CAS  Google Scholar 

  • Kupchan, S. M., Aynehchi, Y., Cassady, J. M., Schones, H. K., Burlingaame, A. L., Tumor Inhibitions XL. The Isolation and Structural Elucidation of Elephantin and Elephantopin, Two Novel Sequiterpenoid Tumor Inhibitors from Elephantopus Elatus.J. Org. Chem., 34, 3867–3875 (1969a).

    Article  PubMed  CAS  Google Scholar 

  • Kupchan, S. M., Giacobbe, T. J., Krull, I. S., Thomas, A. M., Eakin, M. A., Fessler, D. C., Reaction of Endocyclic α,β-Unsaturated γ-Lactones with Thiols.J. Org. Chem., 35, 3539–3542 (1970).

    Article  CAS  Google Scholar 

  • Kupchan, S. M., Hemingway R. J., Werner, D., Karim, A., Tumor Inhibitors. VI. Verlepin, a Novel Sesquiterpene Dilactone Tumor Inhibitor from Vernonia-hymenolepis A. Rich,J. Org. Chem., 34, 3903–3908 (1969b).

    Article  PubMed  CAS  Google Scholar 

  • Lee, K-H, Furukawa, H., Huang, E-S.J. Med. Chem., 15, 6009–611 (1972).

    Google Scholar 

  • Lee, K-H., Ibuka, T., Kim, S. H., Vestal, B. R., Hall, I. H., Antitumor Agents 16. Steroidal α-Methylene-γ-lactones.J. Med. Chem., 18, 812–817 (1975).

    Article  PubMed  CAS  Google Scholar 

  • Lee, K-H., Imakura, Y., Sims, D., McPail, A. T. Onan, K. D.J. Chem. Soc., Commun., 341, 1976.

  • Montgomery, J. A., Temple, C., The Alkylation of 5-Chloropurine.J. Am. Chem. Soc., 83, 630–635 (1961).

    Article  CAS  Google Scholar 

  • Mosmann, T., Rapid Colorimetric Assay for Cellular Growth and Survival; Application to Proliferaton and Cytotoxicity Assays.J. Immunol. Methods, 65, 55–63 (1983).

    Article  PubMed  CAS  Google Scholar 

  • Ohler, E., Reining, K., Schmidt, U., A Simple Sythesis of α-Methylene-γ-lactones.Angew. Chem. Internat. Ed., 9, 457–459 (1970).

    Article  Google Scholar 

  • Rosowsky, A., Papathanasopoulos, N., Lazarus, H., Foley, G. E., Modest, E. J.J. Med. Chem., 17, 672–676 (1974).

    Article  PubMed  CAS  Google Scholar 

  • Sanyal, U., Mitra, S., Pal P., Chakraborti, S. K., New α-Methylene-γ-Lactone Derivatives of Substituted Nucleic Acid Bases as Potential Anticancer Agents.J. Med. Chem., 29, 595–599 (1986).

    Article  PubMed  CAS  Google Scholar 

  • Schinazi, R., Arbiser. J., Lee, J., Kalman, T., Prusoft. W., Sythesis and Biological Activity of 5-Phenyl Substituted Pyrimidine Nucleosides,J. Med. Chem., 1293–1295 (1986).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, J.C., Kim, JA., Park, J.I. et al. Potential antitumor α-methylene-ψ-butyrolactone-bearing nucleic acid bases. 2. Synthesis of 5′-methyl-5′-[2-(5-substituted uracil-1-yl)ethyl]-2′-oxo-3′-methylenetetrahydrofurans. Arch. Pharm. Res. 20, 253–258 (1997). https://doi.org/10.1007/BF02976153

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02976153

Key words

Navigation