Skip to main content
Log in

Multimerization of bovine Thyroglobulin, partially unfolded or partially unfolded/reduced; Involvement of protein disulfide isomerase and glutathionylated disulfide linkage

  • Research Article
  • Article
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Fate of the nascent thyrolglobulin (Tg) molecule is characterized by multimerization. To establish the formation of Tg multimers, the partially unfolded/reduced Tg or deoxycholate-treated/ reduced Tg was subjected to protein disulfide isomerase (PDI)-mediated multimerization. Oxidized glutathione/PDI-mediated formation of multimeric Tg forms, requiring at least an equivalent molar ratio of PDI/Tg monomer, decreased with increasing concentration of reduced glutathione (GSH), suggesting the oxidizing role of PDI. Additional support was obtained when PDI alone, at a PDI/Tg molar ratio of 0.3, expressed a rapid multimerization. Independently, the exposure of partially unfolded Tg to GSH resulted in Tg multimerization, enhanced by PDI, according to thiol-disulfide exchange. Though to a lower extent, a similar result was observed with the dimerization of deoxycholate-pretreated Tg monomer. Consequently, it is implied that intermolecular disulfide linkage may be facilitated at a limited region of unfolded Tg. In an attempt to examine the multimerization site, the cysteine residue-rich fragments of the Tg were subjected to GSH-induced multimerization; a 50 kDa fragment, containing three vicinal dithiols, was multimerized, while an N-terminal domain was not. Present results suggest that the oxidase as well as isomerase function of PDI may be involved in the multimerization of partially unfolded Tg or deoxycholate-treated Tg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bass, R., Ruddock, L. W., Klappa, P., and freedman, R. B., A major fractin of endoplasmic reticulum-located glutathione is present as mixed disulfides with protein.J. Biol. Chem., 279, 5257–5262 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Bradford, M. M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Anal. Biochem., 72, 248–254 (1976).

    Article  PubMed  CAS  Google Scholar 

  • Chernoff, S. B. and Rawitch, A. B., Thyroglobulin structurefunction. Isolation and characterization of a thyroxinecontaining polypeptide from bovine thyroglobulin.J. Biol. Chem., 256, 9425–9430 (1981).

    PubMed  CAS  Google Scholar 

  • Cuozzo, J. W. and Kaiser, C. A., Competition between glutathione and protein thiols for disulphide-bond formation.Nature Cell Biol., 1, 130–135 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Darby, N. J., Freedman, R. B., and Creghton, T. E., Dissecting the mechanism of protein disulfide isomerase: catalysis of disulfide bond formation in a model peptide.Biochemistry, 33, 7937–7947 (1994).

    Article  PubMed  CAS  Google Scholar 

  • De Crombrugghe, B., Pitt-Rivers, R., and Edelhoch, H., The Properties of Thyroglobulin. XI. The reduction of the disulfide bonds.J. Biol. Chem., 241, 2766–2773 (1966).

    PubMed  CAS  Google Scholar 

  • Delom, F., Lejeune, P.-J., Vinet, L., Carayon, P., and Mallet, B., Involvement of oxidative reactions and extracellular protein chaperones in the rescue of misassembled thyroglobulin in the follicular lumen.Biochem. Biophys. Res. Comm., 255, 438–443 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Delom, F., Mallet, B., Carayon, P., and Lejeune, P. J., Role of extracellular molecular chaperones in the folding of oxidized proteins. Refolding of colloidal thyroglobulin by protein disulfide isomerase and immunoglobulin heavy chain-binding protein.J. Biol. Chem., 276, 21337–21342 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Ellman, G. L., Tissue sulfhydryl groups.Arch. Biochem. Biophys., 82, 70–77 (1959).

    Article  PubMed  CAS  Google Scholar 

  • Frand, A. R., Cuozzo, J. W., and Kaiser, C. A., Pathways for protein disulphide bond formation.Trends Cell Biol., 10, 203–210 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Freedman, R. B., Hawkins, H. C., and McLaughlin, S. H., Protein disulfide-isomerase.Methods Enzymol., 251, 397–406 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Freedman, R. B., Hirst, T. R., and Tuite, M. F., Protein disulphide isomerase: building bridges in protein folding.Trends Biochem. Sci., 19, 331–336 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Freedman, R. B.,Trends Biochem. Sci., 9, 438–441 (1984).

    Article  CAS  Google Scholar 

  • Gentile, F., Di Lauro, R., and Salvatore, G., in Endocrinology, In DeGroot, L. J., 3rd Ed., pp. 517–542, W. B. Saunders Co., Philadelphia, PA (1995).

    Google Scholar 

  • Gentile, F., Pasquale, F., Mamone, G., Malorni, A., and Salvatore, G., Identification of Hormonogenic Tyrosines in Fragment 1218-1591 of Bovine Thyroglobulin by Mass Spectrometry. Hormonogenic acceptor Tyr-1291 and donor Tyr-1375.J. Biol. Chem., 272, 639–646 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Gilbert, H. F., Catalysis of thiol/disulfide exchange: singleturnover reduction of protein disulfide-isomerase by glutathione and catalysis of peptide disulfide reduction.Biochemistry, 28, 7298–7305 (1989).

    Article  PubMed  CAS  Google Scholar 

  • Gilbert, H. F., Molecular and cellular aspects of thiol-disulfide exchange.Adv. Enzymol. Relat. Areas Mol. Biol., 63, 69–172 (1990).

    Article  PubMed  CAS  Google Scholar 

  • Gilbert, H. F., Protein Disulfide Isomerase and Assisted Protein Folding.J. Biol. Chem., 272, 29399–29402 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Herzog, V., Bemdorfer, U., and Saber, Y., Isolation of insoluble secretory product from bovine thyroid: extracellular storage of thyroglobulin in covalently cross-linked form.J. Cell Biol., 118, 1071–1083 (1992).

    Article  PubMed  CAS  Google Scholar 

  • Kim, P. S. and Arvan, P., Calnexin and BiP act as sequential molecular chaperones during thyroglobulin folding in the endoplasmic reticulum.J. Cell Biol., 128, 29–38 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Kim, P. S., Kim, K.-R., and Arvan, P., Disulfide-linked aggregation of thyroglobulin normally occurs during nascent protein folding.Am. J. Physiol. Cell Physiol., 265, C704-C711 (1993).

    CAS  Google Scholar 

  • Klein, M., Gestmann, I., Bemdorfer, U., Schmitz, A., and Herzog, V., The thioredoxin boxes of thyroglobulin: possible implications for intermolecular disulfide bond formation in the follicle lumen.Biol. Chem., 381, 593–601 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Kuznetsov, G., Chen, L. B., and Nigam, S. K., Multiple Molecular Chaperones Complex with Misfolded Large Oligomeric Glycoproteins in the Endoplasmic Reticulum.J. Biol. Chem., 272, 3057–3063 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Laemmli, U. K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Nature, 227, 680–685 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Malthiery, Y. and Lissitzky, S., Primary structure of human thyroglobulin deduced from the sequence of its 8448-base complementary DNA.Eur. J. Biochem., 165, 491–498 (1987).

    Article  PubMed  CAS  Google Scholar 

  • Mercken, L., Simons, M.-J., Swillens, S., Massaer, M., and Vassart, G., Primary structure of bovine thyroglobulin deduced from the sequence of its 8,431-base complementary DNA.Nature, 316, 647–651 (1985).

    Article  PubMed  CAS  Google Scholar 

  • Nigam, S. K., Goldberg, A. L., Ho, S., Rohde, M. F., Bush, K. T., and Sherman, M. Y., A set of endoplasmic reticulum proteins possessing properties of molecular chaperones includes Ca(2+)-binding proteins and members of the thioredoxin superfamily.J. Biol. Chem., 269, 1744–1749 (1994).

    PubMed  CAS  Google Scholar 

  • Pagani, M., Rabbri, M., Benedetti, C., Fassio, A., Pilati, S., Bulleid, N. J., Cabibbo, A., and Sitia, R., Endoplasmic Reticulum Oxidoreductin 1-Lβ (ERO1-Lβ), a Human Gene Induced in the Course of the Unfolded Protein Response.J. Biol. Chem., 275, 23685–23692 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Ruoppolo, M., Freedman, R. B., Pucci, P., and Marino, G., Glutathione-dependent pathways of refolding of RNase T1 by oxidation and disulfide isomerization: catalysis by protein disulfide isomerase.Biochemistry, 35, 13636–13646 (1996).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dai-Eun Sok.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, XW., Sok, DE. Multimerization of bovine Thyroglobulin, partially unfolded or partially unfolded/reduced; Involvement of protein disulfide isomerase and glutathionylated disulfide linkage. Arch Pharm Res 27, 1275–1283 (2004). https://doi.org/10.1007/BF02975894

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02975894

Key words

Navigation