Skip to main content
Log in

Cloning, sequence analysis, and characterization of theastA gene encoding an Arylsulfate sulfotransferase fromCitrobacter freundii

  • Research Article
  • Pharmacology, Toxicology & Pharmaceutics
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Arylsulfate sulfotransferase (ASST) transfers a sulfate group from a phenolic sulfate ester to a phenolic acceptor substrate. In the present study, the gene encoding ASST was cloned from a genomic library copy ofCitrobacter freundii, subcloned into the vector pGEM3Zf(-) and sequenced. Sequencing revealed two contiguous open reading frames (ORF1 and ORF2) on the same strand and based on amino acid sequence homology, they were designated asastA anddsbA, respectively. The amino acid sequence ofastA deduced fromC. freundii was highly similar to that of theSalmonella typhimurium, Enterobacter amnigenus, Klebsiella, Pseudomonas putida, andCampylobacter jejuni, encoded by theastA genes. However, the ASST activity assay revealed different acceptor specificities. Usingp-nitrophenyl sulfate (PNS) as a donor substrate, α-naphthol was found to be the best acceptor substrate, followed by phenol, resorcinol,p-acetaminophen, tyramine and tyrosine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J., Basic local alignment search tool.J. Mol. Biol., 215, 403–410 (1990).

    PubMed  CAS  Google Scholar 

  • Baek, M. C., Kim, S. K., Kim, D. H., Kim, B. K., and Choi, E. C., Cloning and sequencing of theKlebsiella K-36astA gene, encoding an arylsulfate sulfotransferase.Microbiol. Immunol., 40, 531–537 (1996).

    PubMed  CAS  Google Scholar 

  • Baek, M. C., Kwon, A. R., Chung, Y. J., Kim, B. K., and Choi, E. C., Distribution of bacteria with the arylsulfate sulfotransferase activity.Arch. Pharm. Res., 21, 475–477 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Bardwell, J. C., McGovern, K., Beckwith, J., Identification of a protein required for disulfide bond formationin vivo. Cell, 67, 581–589 (1991).

    CAS  Google Scholar 

  • Birnboim, H. C., A rapid alkaline extraction method for the isolation of plasmid DNA.Methods Enzymol., 100, 243–255 (1983).

    Article  PubMed  CAS  Google Scholar 

  • Dodgson, K. S., and Tudball, N., The metabolite of the sulfate group of potassium p-nitrophenyl[35S]sulfate.Biocbem. J., 74, 154–159 (1960).

    CAS  Google Scholar 

  • Goldberg, S. L., Nanduri, V., Cino, P. M., and Patel, R., Purification, cloning and characterization of an arylsulfotransferase gene from the anaerobic bacteriumEubacterium rectale IIIH.J. Ind. Microbiol. 25, 305–309 (2000).

    Article  CAS  Google Scholar 

  • Harley, C. B., and Reynolds, R. P., Analysis ofE. coli promoter sequences.Nucleic Acids Res., 15, 2343–2361 (1987).

    Article  PubMed  CAS  Google Scholar 

  • Holt, J. G., N. R. Krieg, P. H. A. Sneath, J. T. Staley and S. T. Williams.,In Bergey’s manual of determinative bacteriology, The Williams & Wilkins Co., Baltimore, Md., (9th eds.), (1994).

    Google Scholar 

  • Kahnert, A., and Kertesz, M. A., Characterization of a sulfurregulated oxygenative alkylsulfatase fromPseudomonas putida S-313.J. Biol. Cbem., 275, 31661–31667 (2000).

    Article  CAS  Google Scholar 

  • Kang, J. W., Kwon, A. R., Kim, D. H., and Choi, E. C., Cloning and sequencing of theastA gene encoding arylsulfate sulfotransferase fromSalmonella typhimurium.Biol. Pharm. Bull., 24, 570–574 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Kim, D. H., Konishi, L., and Kobashi, K., Purification, characterization and reaction mechanism of novel arylsulfotransferase obtained from an anaerobic bacterium of human intestine.Biocbem. Biophys. Acta., 872, 33–41 (1986).

    CAS  Google Scholar 

  • Kim, D. H., and Kobashi, K., The role of intestinal flora in metabolism of phenolic sulfate esters.Biocbem. Pharmacol., 35, 3507–3510 (1986).

    Article  CAS  Google Scholar 

  • Kim, D. H., and Kobashi, K., Kinetic studies on a novel sulfotransferase fromEubacterium A-44, a human intestinal bacterium.J. Biocbem., 109, 45–48 (1991).

    CAS  Google Scholar 

  • Kim, D. H., Kim, H. S., and Kobashi, K., Purification and characterization of novel sulfotransferase obtained fromKlebsiella K-36, an intestinal bacterium of rat.J. Biochem., 112, 456–460 (1992).

    PubMed  CAS  Google Scholar 

  • Kim, D. H., Kim, H. S., Imamura, L., and Kobashi, K., Kinetic studies on a sulfotransferase fromKlebsiella K-36, a rat intestinal bacterium.Biol. Pharm. Bull., 17, 543–545 (1994).

    PubMed  CAS  Google Scholar 

  • Kobashi, K., and Kim, D. H., A novel sulfotransferase sulfates tyrosine-containing peptides and proteins.Biocbem. Biophys. Res. Commun., 140, 38–42 (1986).

    Article  CAS  Google Scholar 

  • Kwon, A. R., Oh, T. G., Kim, D. H., and Choi, E. C., Molecular cloning of the arylsulfate sulfotransferase gene and characterization of its product fromEnterobacter amnigenus AR-37.Protein Expression Purit, 17, 366–372 (1999).

    Article  CAS  Google Scholar 

  • Lee, N. S., Kim, B. T., Kim, D. H., and Kobashi, K., Purification and reaction mechanism of arylsulfate sulfotransferase fromHaemophilus K-12, a mouse intestinal bacterium.J. Biochem., 118, 796–801 (1995).

    PubMed  CAS  Google Scholar 

  • Muramatsu, R., Nukui, E., Sukesada, A., Misawa, S., Komatsu, Y., Okayama, T., Wada, K., Morikawa, T., Hayashi, H., and Kobashi, K., Enzymatic O-sulfation of tyrosine residues in hirudins by sulfotransferase fromEubacterium A-44.Eur. J. Biochem., 223, 243–248 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Roy, A. B.,In Sulfotransferases, Sulfation of Drugs and Related Compounds, Mulder, G. J., (Eds.), CRC Press, Boca Raton, FL., pp. 131–185 (1981).

    Google Scholar 

  • Sanger, F., Nicklen, S., and Coulson, A. R., DNA sequencing with chain-terminating inhibitors.Proc. Natl. Acad. Sci. USA., 74, 5463–5467 (1977).

    Article  PubMed  CAS  Google Scholar 

  • Sekura, R. D., and Jakoby, W. B., Phenol sulfotransferase.J. Biol. Chem., 254, 5658–5663 (1979).

    PubMed  CAS  Google Scholar 

  • Sekura, R. D., Duffel, M. W., and Jakoby, W. B., Arylsulfotransferase.Methods Enzymol., 77, 197–206 (1981).

    Article  PubMed  CAS  Google Scholar 

  • Shine, J., and Dalgarno, L., The 3’-terminal sequence ofEscherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding site. Proc. Natl. Acad. Sci. USA., 71, 1342–1346 (1974).

    Article  PubMed  CAS  Google Scholar 

  • Spencer, B., Endogenous sulfate acceptors in rat liver.Biochem. J., 77, 294–304 (1960).

    PubMed  CAS  Google Scholar 

  • Thompson, J. D., Higgins, D. G., and Gibson, T. J., Clustal W.: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positionspecific gap penalties and weight matrix choice.Nucleic Acids Res., 22, 4673–4680 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Yao, R., and Cuerry, P., Molecular cloning and site-specific mutagenesis of a gene involved in arylsulfatase production inCampylobacter jejuni.J. Bacteriol., 178, 3335–3338 (1996).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eung-Chil Choi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, JW., Jeong, YJ., Kwon, AR. et al. Cloning, sequence analysis, and characterization of theastA gene encoding an Arylsulfate sulfotransferase fromCitrobacter freundii . Arch Pharm Res 24, 316–322 (2001). https://doi.org/10.1007/BF02975099

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02975099

Key words

Navigation