Skip to main content
Log in

Kanamycin acetyltransferase gene from kanamycin-producingStreptomyces kanamyceticus IFO 13414

  • Notes
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

A kanamycin producer,Streptomyces kanamyceticus IFO 13414 is highly resistant to kanamycin. Cloning of the kanamycin resistance genes inS. lividans 1326 with pIJ702 gave several kanamycin resistant transformants. Two transformants,S. lividans SNUS 90041 andS. lividans SNUS 91051 showed similar resistance patterns to various aminoglycoside antibiotics. Gene mapping experiments revealed that plasmids pSJ5030 and pSJ2131 isolated from the transformants have common resistant gene fragments. Subcloning of pSJ5030 gave a 1.8 Kb gene fragment which showed resistance to kanamycin. Cell free extracts ofS. lividans SNUS 90041,S. lividans SNUS 91051 and subclone aS. lividans SNUS 91064 showed kanamycin acetyltransferase activity. The detailed gene map is included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References cited

  • Bonny, C., Montandon, P.-E., Marc-Martin, S. and Stutz, E., Analysis of streptomycin-resistance ofEscherichia coli mutants.Biochem. Biophys. Acta, 1089, 213–219 (1991).

    PubMed  CAS  Google Scholar 

  • Cundliffe, E., Mechanism of resistance to thiostrepton in the producing-organismStreptomyces azureus.Nature, 272, 792–795 (1978).

    Article  PubMed  CAS  Google Scholar 

  • Cundliffe, E., How antibiotic-producing organisms avoid suicide.Annu. Rev. Microbiol., 43, 207–233 (1989).

    Article  PubMed  CAS  Google Scholar 

  • Cundliffe, E. and Thompson, J., Ribose methylation and resistance to thiostrepton.Nature, 278, 859–861 (1979).

    Article  PubMed  CAS  Google Scholar 

  • Davies, J., Houk, C., Yagisawa, M. and White, T. J., Occurrence and function of aminoglycoside modifying enzymes. pp. 116–169.In Sebek, O. K. and Laskin, A. J. (ed.),Genetics of industrial microorganisms. American Society for Microbiology Washington, D.C. (1979).

    Google Scholar 

  • Goo, Y. M., Choi, S. R. and Kim, K. J., Resistance of kanamycin- and neomycin-producing streptomycetes to aminoglycoside antibiotics.Bull Korean. Chem. Soc. 15, 568–571 (1994).

    CAS  Google Scholar 

  • Holmes, D. J. and Cundliffe, E., Analysis of a ribosomal RNA methylase gene fromStreptomyces tenebrarius which confers resistance to gentamicin. Mol. Gen. Genet., 229, 229–237 (1991).

    Article  PubMed  CAS  Google Scholar 

  • Hopwood, D. A., Bibb, M. J., Chater, K. F. and Kiser, T., Plasmid and phage vectors for gene cloning and analysis inStreptomyces.Methods. Enzymol. 153, 116–116 (1987).

    Article  PubMed  CAS  Google Scholar 

  • Hotta, K., Ishikawa, J., Ichihara, M., Naganawa, H. and Mizuno, S., Mechanism of increased kanamycin-resistance generated by protoplast regeneration ofStreptomyces griseus. I. Cloning of a gene segment directing a high level of an aminoglycoside 3-N-acetyltransferase activity.J. Antibiot. 41, 94–103 (1988).

    PubMed  CAS  Google Scholar 

  • Hotta, K., Yamamoto, H., Okami, Y. and Umezawa, H., Resistance mechanisms of kanamycin-, neomycin-and streptomycin-producing streptomycetes to aminoglycoside antibiotics.J. Antibiot., 34, 1175–1182 (1981).

    PubMed  CAS  Google Scholar 

  • Ishikawa, J., Koyama, Y., Mizuno, S., and Hotta, K., Mechanisms of increased kanamycin-resistance generated by protoplast regeneration ofStreptomyces griseus. II. Mutational gene alteration and gene amplification.J. Antibiot., 41, 104–112 (1988).

    PubMed  CAS  Google Scholar 

  • Joe, Y. A., Doctoral Thesis, Development of newStreptomyces vectors and application to the cloning of aminoglycoside antibiotic resistance and pseudosaccharide formation genes. Seoul National University, (1992).

  • Joe, Y. A. and Goo, Y. M., Isolation and characterization of plasmids fromStreptomyces.J. Microbiol. Biotechnol. 4, 278–284 (1994).

    CAS  Google Scholar 

  • Kieser, T., Factors affecting the isolation of cDNA fromStreptomyces lividans andEscherichia coli.Plasmid. 12, 19–36 (1984).

    Article  PubMed  CAS  Google Scholar 

  • Matsuhashi, Y., Murakami, T., Nojiri, C., Toyama, H., Anzai, H. and Nagaoka, K., Mechanism of aminoglycoside-resistance ofStreptomyces harboring resistant genes obtained from antibiotic-producers.J. Antibiot., 38, 279–282 (1984).

    Google Scholar 

  • Murakami, T., Nojiri, C., Toyama, H., Hayashi, E., Katsumata, K., Anzai, H., Matsuhashi, Y., Yamada, Y. and Nagaoka, K. Cloning of antibiotic resistance genes inStreptomyces.J. Antibiot. 36, 1305–1311 (1983).

    PubMed  CAS  Google Scholar 

  • Nakano, M. M., Butsuya, I. and Ogawara, H., Expression of the kanamycin resistance gene in a kanamycin-producing strain ofStreptomyces kanamyceticus.J. Antibiot., 42, 423–430 (1988).

    Google Scholar 

  • Nakano, M. M., Mashiko, H. and Ogawara, H., Cloning of the kanamycin resistance gene from a kanamycin-producingStreptomyces species.J. Bacteriol., 157, 79–83 (1984).

    PubMed  CAS  Google Scholar 

  • Okanish, M., Suzuki, K. and Umezawa, H., Formation and reversion of streptomycete protoplasts: cultural conditions and morphological study.J. Gen Microbiol., 80, 389–400 (1974).

    Google Scholar 

  • Pérez-Gonzàlez, J. A., Lopez-Cabrera, M., Pardon, J. M. and Jimenez, A., Biochemical characterization of two cloned resistance determinants encoding a paromomycin phosphotransferase fromStreptomyces rmosus formaparomomycinus.J. Bacteriol, 171, 329–334 (1989).

    PubMed  Google Scholar 

  • Piendle, W., Böck, A. and Cundilffe, E., Involvement of 16S rRNA is resistance of the aminoglycoside-producersSterptomyces jimariensis, Streptomyces tenebrarius andMicromonospora purpurea.Mol. Gen. Gent., 197, 24–29 (1984).

    Article  Google Scholar 

  • Satoh, A., Ogawa, H. and Satomura, Y., Role and regulation mechanism of kanamycin acetyltransferase in kanamycin biosynthesis.Agrc. Biol. Chem., 39, 2331–2336 (1975).

    CAS  Google Scholar 

  • Skinner, R. H. and Cundliffe, E., Resistance to the antibiotics viomycin and capreomycin in the Streptomyces species which produce them.J. Gen. Microbiol., 120, 95–104 (1980).

    PubMed  CAS  Google Scholar 

  • Southern, E. M., Detection of specific sequences among DNA fragments separated by gel electrophoresis.J. Mol. Biol., 98, 503–517 (1975).

    Article  PubMed  CAS  Google Scholar 

  • Sugiyama, M., Sakamoto, M., Mochizuki, H., Nimi, O. and Nomi, R., Purification and characterization of streptomycin-6-kinase, and enzyme implicated in self protection of a streptomycin-producing microorganism.J. Gen. Microbiol., 129, 1683–1687 (1983).

    PubMed  CAS  Google Scholar 

  • Thompson, C. J., Shinner, R. H., Thompson, J., Ward, J. M., Hopwood, D. A. and Cundliffe, E., Biochemical characterization of resistance determinants cloned from antibiotic-producing streptomycetes.J. Bacteriol., 151, 678–685 (1982).

    PubMed  CAS  Google Scholar 

  • Thompson, C. J., Ward, J. M., and Hopwood, D. A., Cloning of antibiotic resistance and nutritional genes in streptomycetes.J. Bacteriol., 151, 668–677 (1982).

    PubMed  CAS  Google Scholar 

  • Yamaoto, H., Hotta, K., Okami, Y. and Umezawa, H., Ribosomal resistance of an istamycin producer,Streptomyces tenjimariensis, to aminoglycoside antibioties.Biochem. Biophys. Res. Commun., 100, 1396–1401 (1981).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joe, Y.A., Goo, Y.M. Kanamycin acetyltransferase gene from kanamycin-producingStreptomyces kanamyceticus IFO 13414. Arch. Pharm. Res. 21, 470–474 (1998). https://doi.org/10.1007/BF02974645

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02974645

Key words

Navigation