Skip to main content
Log in

Potential antitumor α-methylene-γ-butyrolactone-bearing nucleic acid base. 3. Synthesis of 5′-Methyl-5′-[(6-substituted-9H-purin-9-yl)methyl]-2′-oxo-3′-methylenetetrahydrofurans

  • Research Articles
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Search for a new α-methylene-γ-butyrolactone-bearing 6-substituted purine as a potental antitumor agent has led to synthesize seven, hitherto unreported, 5′-Methyl-5′-[(6-substituted-9H-purin-9-yl)methyl]-2′-oxo-3′ methylenetetrahydrofurans (H, Cl, I, CH3, NH2, SH, >C=O) (6a-g). These include 5′-Methyl-5′-[(9H-purin-9-yl)methyl]-2′-oxo-3′-methylenetetrahydrofurans (6a), 5′-Methyl-5′-[(6-chloro-9H-purin-9-yl)methyl]-2′-oxo-3′-methylenetetrahydrofurans (6b), 5′-Methyl-5′-[(6-iodo-9H-purin-9-yl) methyl]-2′-oxo-3′-methylenetetrahydrofurans (6c), 5′-Methyl-5′-[(6-methyl-9H-purin-9-yl) methyl]-2′-oxo-3′-methylenetetrahydrofurans (6d), 5′-Methyl-5′-[(9H-adenin-9-yl)methyl]-2′-oxo-3′-methylenetetrahydrofurans (6e), 5′-Methyl-5′-[(6-mercapto-9H-purin-9-yl) methyl]-2′-oxo-3′-methylenetetrahydrofurans (6f) and 5′-Methyl-5′-[(9H-hypoxanthin-9-yl)methyl]-2′-oxo-3′-methylenetetrahydrofurans (6g) which were made by the Reformatsky-type reaction of ethyl α-(bromomethyl) acrylate with the corresponding (6-substituted-9H-purin-9-yl)-2-propanone intermediates (5a-g). These ketone intermediates5a-g, 1-(9H-purin-9-yl)-2-propanone (5a), 1-(6-chloro-9H-purin-9-yl)-2-propanone, (5b), 1-(6-iodo-9H-purin-9-yl)-2-propanone (5c), 1-(6-methyl-9H-purin-9-yl)-2-propanone (5d), 1-(9H-adenin-9-yl)-2-propanone (5e), 1-(6-mercapto-9H-purin-9-yl)-2-propanone (5f), and 1-(9H-hypoxanthin-9-yl)-2-propanone (5g) were directly obtained by the alkylation of the 6-substituted purine bases with the chloroacetone in the presence of K2CO3 (or NaH) under DMF (or DMSO). The preliminary in vitro cytotoxcity assay for the synthetic α-methylene-γ-butyro-lactone compounds (6a-g) were determined against three cell lines (PM-3A, P-388, and K-562) and showed the moderate antitumor activity (IC50 ranged from 1.4 to 4.3 μg/ml) with the compound 5′-methyl-5′-[(9H-hypoxanthin-9-yl)methyl]-2′-oxo-3′-methylenetetrahydrofuran (6g) showing the least antitumor activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References Cited

  • Carmichael, J., DeGraff, W. G., Gazder, A. F., Minna, J. D. and Mitchell, J. B., Evaluation of a tetrazolium-based semiautomated colorimetric assay;Assessment of chemosensitivity testing.Cancer Res., 47 936–940 (1987).

    PubMed  CAS  Google Scholar 

  • Cassady, J. M., Bryn, S. R., Stamos, I. K., Evans, S. M., and McKenzie, A., Potential antitumor agents. Synthesis, reactivity and cytotoxicity of α-methylene carbonyl compunds.J. Med. Chem., 21, 815–819 (1978).

    Article  PubMed  CAS  Google Scholar 

  • Dehal, S. S., Marples, B. A., Stretton, R. J. and Traynor, J. R., Steroidal α-methylenes as potential antitumor agents.J. Med. Chem., 23, 90–92 (1980).

    Article  PubMed  CAS  Google Scholar 

  • Farina, V. and Hauck, S. I., Palladium-catalyzed approach to 5-substituted uracil and uridine derivatives.Synlett., 157–159 (1991).

  • Ferris, A. F., The Action of mineral acid on diethyl bis (hydroxymethyl) malonate.J. Org. Chem., 20, 780–787 (1955).

    Article  CAS  Google Scholar 

  • Fursteer, A., Recent Advancements in the reformatsky reaction.Synthesis 571–589 (1989).

  • Gammill, R. B., Wilson, C. A. and Bryson, T. A., Synthesis of α-methylene-γ-butyrolactons.Synthetic Communication, 5, 245–268 (1975).

    Article  CAS  Google Scholar 

  • Goudgaon, N. H., Nafuib, F. N. H., el Kouni, M. H. and Schinazi, R. F. Phenylselenenyl- and phenylthio-substituted pyrimidines as inhibitors of dihydrouracil dehydrogenase and uridine phosphouylase.J. Med. Chem., 36, 4250–4254 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Grieco, P. A., Methods for the synthesis of α-methylene lactones.Synthesis, 67–77 (1975).

  • Hall, I. H., Lee, K-H., Mar, E. C., Starnes, C. O., Waddel, T. G., Antitumor agents. 21. A proposed mechanism for inhibition of cancer growth by tenulin and helenalin and related cyclopentenones.J. Med. Chem., 20, 333–337 (1977).

    Article  PubMed  CAS  Google Scholar 

  • Heindel, N. D., Minatelli, J. A., Synthesis and Antibacterial and anticancer evaluations of α-methylene-γ-butyrolactones.J. Pharm. Sci., 70, 84–86 (1981).

    Article  PubMed  CAS  Google Scholar 

  • Davoll, J. and Lowy, B. A. A., New synthesis of purine nucleosides. The synthesis of adenosine, guanosine and 2,6-diamino-9-β-D-ribofuranosylpurine.J. Am. Chem. Soc., 73, 1650 (1951).

    Article  CAS  Google Scholar 

  • Lee, K. H., Rice, G. K., Hall, I. H. and Amarnath, V., Antitumor agents. 86. Synthesis and cytotoxicity of α-methylene-γ-lactone-bearing purines.J. Med. Chem., 30, 586 (1987).

    Article  PubMed  CAS  Google Scholar 

  • Kim, J. C., Dong, E. S., Ahn, J. W., Kim, S. H., Synthesis and evaluation of antitumor activity of a homologous series of 1-(ω-cyanoalkyl) and 1,3-bis (ω-cyanoalkyl)uracil nucleoside analogues.Arch. Pharm. Res., 17, 135–138 (1994c).

    Article  CAS  Google Scholar 

  • Kim, J. C., Dong, E. S., Kim, J. A., Kim, S. H., Park, J. I. and Kim, S. H., Synthesis and antitumor evaluation of acyclic 5-substituted pyrimidine nucleoside analogues.Korean J. Med. Chem., 4, 111–118 (1994d).

    CAS  Google Scholar 

  • Kim, J. C., Dong, E. S., Park, J. I., Bae, S. D. and Kim, S. H., 5-Substituted pyrimidine acyclic nucleoside analogues. 1-Cyanomethyl- and 1-(4-cyanobutyl)-5-substituted uracils as candidate antitumor agents.Arch. Pharm. Res., 17, 480–482 (1994a).

    Article  PubMed  CAS  Google Scholar 

  • Kim, J. C., Lee, Y. H., Synthesis and evaluation of uracil-6-carboxaldehyde Schiff base as potential antitumor agents.Korean J. Med. Chem., 2, 64–69 (1992).

    CAS  Google Scholar 

  • Kim, J. C., Park, J. I. and Hur, T. H., Synthesis of 4-azacholestane derivatives containing nitrosoureido function as antitumor activity.Bull. Korean Chem. Soc., 14, 176–178 (1993a).

    CAS  Google Scholar 

  • Kim, J. C., Peak, H. D., Moon, S. H. and Kim, S. H., Synthesis of steroidal cyclophosphamide, 2-bis(2-chloroethyl)amino-2-oxo-6-(5α-cholestanyl)-1,3,2-oxazaphorinane.Bull. Korean Chem. Soc., 14, 318–319 (1993b).

    CAS  Google Scholar 

  • Kupchan, S. M., Aynehchi, Y. and Cassady, J. M., Schones, H. K., Burlingaame, A. L., Tumor inhibitions XL. The isolation and structural elucidation of elephantin and elephantopin, Two novel sequiterpenoid tumor inhibitors fromElephantopus elatus.J. Org. Chem., 34, 3867–3875 (1969a).

    Article  PubMed  CAS  Google Scholar 

  • Kupchan, S. M., Giacobbe, T. J., Krull, I. S., Thomas, A. M., Edkin, M. A. and Fessler, D. C., Reaction of endocydlic α,β-unsaturated γ-lactones with thiols.J. Org. Chem., 35, 3539–3542 (1970).

    Article  CAS  Google Scholar 

  • Kupchan, S. M., Hemingway, R. J., Werner, D. and Karim, A., Tumor inhibitors. VI. Verlepin, a novel sesquiterpene dilactone tumor inhibitor fromVernoniahymenolepls A. Rich.J. Org. Chem., 34, 3903–3908 (1969b).

    Article  PubMed  CAS  Google Scholar 

  • Lee, K-H., Furukawa, H., Huang, E-S., Antitumor agents. 3. Synthesis and cytotoxic activity of helenalin amine adducts and related derivatives.J. Med. Chem., 15, 609–611 (1972).

    Article  PubMed  CAS  Google Scholar 

  • Lee, K-H., Ibuka, T., Kim, S. H., Vestal, B. R. and Hall, I. H., Antitumor agents 16. Steroidal α-methylene-γ-lactones.J. Med. Chem., 18, 812–817 (1975).

    Article  PubMed  CAS  Google Scholar 

  • Lee, K. H., Imakura, Y., Sims, D., McPail, A. T. and Onan, K. D.,J. Chem. Soc., Commun., 341 (1976).

  • Montgomery, J. A. and Temple, C., The Alkylation of 5-chloropurine.J. Am. Chem. Soc., 83, 630–635 (1961).

    Article  CAS  Google Scholar 

  • Mosmann, T., Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays.J. Immunol. Methods, 65, 55–63 (1983).

    Article  PubMed  CAS  Google Scholar 

  • Ohler, E., Reining, K. and Schmidt, U., A simple sythesis of α-methylene-γ-lactones. Angew. Chem. Internat. Ed., 9, 457–459 (1970).

    Article  Google Scholar 

  • Rosowsky, A., Papathanasopoulos, N., Lazarus, H., Foley, G. E. and Modest, E. J.,J. Med. Chem., 17, 672–676 (1974).

    Article  PubMed  CAS  Google Scholar 

  • Sanyal, U., Mitra S., Pal, P. and Chakraborti, S. K., New α-methylene-γ-lactone derivatives of substituted nucleic acid bases as potential anticancer agents.J. Med. Chem., 29, 595–599 (1986).

    Article  PubMed  CAS  Google Scholar 

  • Schinazi, R., Arbiser. J, Lee, J., Kalman, T. and Prusoft. W., Synthesis and biological activity of 5-phenyl substituted pyrimidine nucleosides.J. Med. Chem., 1293–1295 (1986).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, J.C., Kim, SH., Kim, JA. et al. Potential antitumor α-methylene-γ-butyrolactone-bearing nucleic acid base. 3. Synthesis of 5′-Methyl-5′-[(6-substituted-9H-purin-9-yl)methyl]-2′-oxo-3′-methylenetetrahydrofurans. Arch. Pharm. Res. 21, 458–464 (1998). https://doi.org/10.1007/BF02974643

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02974643

Key words

Navigation