Antifungal effect of amentoflavone derived fromSelaginella tamariscina

Abstract

Amentoflavone is a plant biflavonoid that was isolated from an ethyl acetate extract of the whole plant ofSelaginella tamariscina (Beauv.) spring. 1D and 2D NMR spectroscopy including DEPT, HMQC, and HMBC were used to determine its structure. Amentoflavone exhibited potent antifungal activity against several pathogenic fungal strains but had a very low hemolytic effect on human erythrocytes. In particular, amentoflavone induced the accumulation of intracellular trehalose onC. albicans as a stress response to the drug, and disrupted the dimorphic transition that forms pseudo-hyphae during pathogenesis. In conclusion, amentoflavone has great potential to be a lead compound for the development of antifungal agents.

This is a preview of subscription content, access via your institution.

References

  1. Attfield, P. V., Trehalose accumulates inSaccharomyces cerevisiae during exposure to agents that induce heat shock response.FEBS Lett., 225, 259–263 (1987).

    PubMed  Article  CAS  Google Scholar 

  2. Baureithel, K. H., Buter, K. B., Engesser, A., Burkard, W., and Schaffner, W., Inhibition of benzodiazepine binding in vitro by amentoflavone, a constituent of various species ofHypericum.Pharm. Acta Helvetica, 72, 153–157 (1997).

    Article  CAS  Google Scholar 

  3. Benaroudj, N., Lee, D. H., and Goldberg, A. L., Trehalose accumulation during cellular stress protects cells and cellular proteins from damage by oxygen radicals.J. Biol. Chem., 276, 24261–24267 (1987).

    Article  Google Scholar 

  4. Calerone, R. A. and Fonzi, W. A., Virulence factors ofCandida albicans.Trends Microbiol., 9, 327–335 (2001).

    Article  Google Scholar 

  5. Carlo, G. D., Masclo, N., Izzo, A. A., and Capasso, F., Flavonoids: Old and new aspects of a class of natural therapeutic drugs.Life Sci., 65, 337–353 (1999).

    PubMed  Article  Google Scholar 

  6. Elbein, A. D., Pan, Y. T., Oastuszak, I., and Carroll, D., New insights on trehalose: a multifunctional molecule.Glycobiology, 13, 17–27 (2003).

    Article  Google Scholar 

  7. Gambhir, S. S., Geol, R. K., and Das Gupta, G., Anti-inflammatory & anti-ulcerogeinc activity of amentoflavone.Indian J. Med. Res., 85, 689–693 (1987).

    PubMed  CAS  Google Scholar 

  8. Gil, B., Sanz, M. J., Terencio, M. C., Gunasegaran, R., Paya, M., and Alcaraz, M. J., Morelloflavone, a novel biflavonoid inhibitor of human secretory phospholipase A2 with antiinflammatory activity.Biochem. Pharmacol., 53, 733–740 (1997).

    PubMed  Article  CAS  Google Scholar 

  9. Kim, H. K., Son, K. H., Chang, H. W., Kang, S. S., and Kim, H. P., Amentoflavone, a plant biflavone: a new potential antiinflammatory agent.Arch. Pharm. Res., 21, 406–410 (1998).

    PubMed  CAS  Article  Google Scholar 

  10. Kim, H. P., Mani, I., Iversen, L., and Ziboh, V. A., Effects of naturally-occurring flavonoids and biflavonoids on epidermal cyclooxygenase and lipoxygenase form guinea-pigs.Prostaglandins Leukot. Essent. Fatty Acids., 58, 17–24 (1998).

    PubMed  Article  CAS  Google Scholar 

  11. Krauze-Baranowska, M., Cisowski, W., Wiwart, M., and Madziar, B., Antifungal biflavones fromCupressocyparis leylandii.Planta Med., 65, 572–573 (1999).

    PubMed  Article  CAS  Google Scholar 

  12. Krauze-Baranowska, M. and Wiwart, M., Antifungal activity of biflavones fromTaxus baccata andGinkgo biloba.Z Naturforsch [C]., 58, 65–69 (2003).

    CAS  Google Scholar 

  13. Lee, D. G., Hahm, K.-S., and Shin, S. Y., Structure and fungicidal activity of a synthetic antimicrobial peptide, P8, and its truncated peptides.Biotech. Lett., 26, 337–341 (2004).

    Article  CAS  Google Scholar 

  14. Lee, D. G., Park, Y., Keon, P. I., Jeong, H. G., Woo, E.-R., and Hanm, K.-S., Influence on the plasma membrane ofCandida albicans by HP(2-9)-magainin 2(1-2) hybrid peptide.Biochem. Biophys. Res. Commun. 297, 885–889 (2002).

    PubMed  Article  CAS  Google Scholar 

  15. Lee, H. S., Oh, W. K., Kim, B. Y., Ahn, S. C., Kang, D. O., Shin, D. I., Kim, J., Mheen, T. I., and Ahn, J. S., Inhibition of phospholipase C gamma 1 activity by amentoflavone isolated fromSelaginella tamariscina.Planta Med., 62, 293–296 (1996).

    PubMed  Article  CAS  Google Scholar 

  16. Lin, L., Kuo, U., and Chou, C., Cytotoxic Biflavonoids fromSelaginella delicatula.J. Nat. Prod., 63, 627–630 (2000).

    PubMed  Article  CAS  Google Scholar 

  17. Lin, Y. M., Flavin, M. T., Schure, R., Chen, F. C., Sidwell, R., Barnard, D. L., Huffman, J. H., and Kern, E. R., Antiviral activities of biflavonoids.Planta med., 65, 120–125 (1999).

    PubMed  Article  CAS  Google Scholar 

  18. Lobstein-Guth, A., Briancon-Scheid, F., Victoire, C., Haag-Berrurier, M., and Anton, R., Isolation of amentoflavone fromGinkgo biloba.Planta Med., 54, 555–556 (1998).

    Article  Google Scholar 

  19. Ma, S. C., But, P. P., Ooi, V. E., He, Y. H., Lee, S. H., Lee, S. F., and Lin, R. C., Antiviral amentoflavone fromSelaginella sinensis.Biol. Pharm. Bull., 24, 311–312 (2001).

    PubMed  Article  CAS  Google Scholar 

  20. Markham, K. R., Sheppard, C., and Geiger, H.,13C NMR studies of some naturally occurring amentoflavone and hinokiflavone biflavonoids.Phytochemistry, 26, 3335–3337 (1987).

    Article  CAS  Google Scholar 

  21. Matsuoka, S. and Murata, M., Cholesterol markedly reduces ion permeability induced by membrane-bound amphotericin B.Biochim. Biophys. Acta., 1564, 429–434 (2002).

    PubMed  Article  CAS  Google Scholar 

  22. Mclain, N., Ascanio, R., Baker, C., Strohaver, R. A., and Dolan, J. W., Undeclenic acid inhibits morphogenesis ofCandida albicans.Antimicrob. Agents Chemother., 44, 2873–2875 (2000).

    PubMed  Article  CAS  Google Scholar 

  23. Paik, S. K., Yun, H. S., Sohn, H., and Jin, I., Effect of trehalose accumulation on the intrinsic and acquired thermotolerance on a natural isolateSaccharomyces cerevisiae KNU5377.J. Microbiol. Biotechnol., 13, 85–89 (2003).

    CAS  Google Scholar 

  24. Schulze, U., Larsen, M. E., and Villadsen, J., Determination of intracellular trehalose and glycogen inSaccharomyces cerevisiae.Anal. Biochem., 228, 143–149 (1995).

    PubMed  Article  CAS  Google Scholar 

  25. Sengupta, S., Jana, M. L., Sengupta, D., and Naskar, A. K., A note on the estimation of microbial glycosidase activities by dinitrosalicylic acid reagent.Appl. Microbiol. Biotech., 53, 732–735 (2000).

    Article  CAS  Google Scholar 

  26. Shin, S. Y., Kang, S., Lee, D. G., Eom S. H., Song, W. K., and Kim, J. I., CRAMP analogues having potent antibiotic activity against bacterial, fungal, and tumor cells without hemolytic activity.Biochem. Biophys. Res. Commun., 275, 904–909 (2000).

    PubMed  Article  CAS  Google Scholar 

  27. Silva, G. L., Chai, H., Gupta, M. P., Farnsworth, N. R., Cordell, G. A., Pezzuto, J. M., Beecher, C. W., and Kinghorn, A. D., Cytotoxic biflavonoids fromSelaginella willdenowii.Phytochemistry, 40, 129–134 (1995).

    PubMed  Article  CAS  Google Scholar 

  28. Woo, E.-R., Lee, J. Y., Cho, I. J., Kim, S. G., and Kang, K. W., Amentoflavone inhibits the induction of nitric oxide synthase by inhibiting NF-kappaB activation in macrophages.Pharmacol. Res., 51, 539–546 (2005).

    PubMed  Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Eun-Rhan Woo or Dong Gun Lee.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jung, H.J., Sung, W.S., Yeo, SH. et al. Antifungal effect of amentoflavone derived fromSelaginella tamariscina . Arch Pharm Res 29, 746 (2006). https://doi.org/10.1007/BF02974074

Download citation

Key words

  • Biflavonoid
  • Amentoflavone
  • Antifungal activity
  • Dimorphic transition