Skip to main content
Log in

Effects of I.C.V. administration of ethylcholine aziridinium (AF64A) on the central glutamatergic nervous systems in rats

  • Research Articles
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Changes in glutamatergic nervous activities following intracerebroventricular (icv) administration of ethylcholine aziridinium (AF64A) were studied in rats. The levels of total glutamate, those of glutamate in cerebrospinal fluid (CSF) and in extracellular fluid (ECF) of striatum, the activities of glutamine synthetase (GS), glutaminase and glutamate dehydrogenase (GDH) and the specific binding sites of [3H]MK801 in striatum, hippocampus and frontal cortex were assessed a week after the infusion of AF64A (3 nmol) into lateral ventricle. The levels of total glutamate were significantly decreased in striatum, hippocampus and frontal cortex after AF64A treatment. Although the levels of glutamate in CSF weren't changed after AF64A treatment, the levels of glutamate in ECF of striatum were significantly decreased (62.6%). GS activities in striatum were significantly decreased. But, glutaminase activities in striatum were significantly increased. However, the activities of GS and glutaminase in frontal cortex and hippocampus weren't changed. Although GDH activities in frontal cortex were significantly decreased, those in striatum and hippocampus weren't altered. The striatal densities of [3H]MK 801 binding sites were increased without changes in its affinity. Also, the specific binding sites of [3H]MK801 were increased in frontal cortex but not in hippocampus. These results indicate that the glutamatergic nervous activities were altered with the infusion of AF64A into lateral ventricle. Furthermore, it suggest that the decreased levels of glutamate after AF64A treatment may affect the change in the other parameters of glutamatergic neuronal activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References Cited

  • Abe, E., Murai, S., Masuda, Y., Saito, H. and Itoh, T., Reversal by 3,3′,5-triido-L-thyronine of the working memory deficit, and the decrease in acetylcholine, glutamate and γ-aminobutyric acid induced by ethylcholine aziridinium ion in mice.Naunyn-Schmiedeberg's Arch. Pharmacol., 346, 238–242 (1992).

    Article  CAS  Google Scholar 

  • Bartus, R. T., Dean, R. L., Beer, B. and Lippa, A. S., The cholinergic hypothesis of geriatric memory function.Sci., 217, 408–417 (1982).

    Article  CAS  Google Scholar 

  • Bergmeyer, H. U.,Methods of enzymatic analysis. Verlag Chemie Weinheim Academic Press, Inc. New York and London, 2, pp. 650–656, 1974.

    Google Scholar 

  • Chrobak, J. J., Hanin, I., Schmechel, D. E. and Walsh, T. J., AF64A induced working memory impairment: behavioral, neurochemical and histological correlates.Brain Res., 463, 107–117 (1988).

    Article  PubMed  CAS  Google Scholar 

  • Colye, J. T., Price, D. and DeLong, M., Anatomy of cholinergic projections to cerebral cortex: implications for the pathophysiology of senile dementia of the Alzheimer's type.Trend in Pharmacol., 5, 90–94 (1984).

    Article  Google Scholar 

  • Cowburn, R., Hardy, J. Roberts, P. and Briggs, R., Presynaptic and postsynaptic glutamatergic function in Alzheimer' disease.Neurosci. Lett., 86, 109–113 (1988).

    Article  PubMed  CAS  Google Scholar 

  • Dijk, S. N., Francis, P. T., Stratmann, G. C. and Bowen, D. M., Cholinomimetics increase glutamate outflow via an action on the corticostriatal pathway: implications for Alzheimer's disease.J. Neurochem., 65, 2165–2169 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Ebert, B., Wong, E. H. F. and Krogsgaard-Larsen, P., Identification of a novel NMDA receptor in rat cerebellum.Eur. J. Pharmacol.-Mol. Pharmacol., Section 208, 49–52 (1991).

    Article  CAS  Google Scholar 

  • Ellison, D. W., Beal, M. F. and Martin, J. B., Amino acid neurotransmitters in postmortem human brain analyzed by high performance liquid chromatography with electrochemical detection.J. Neurosci. Methods., 19, 305–315 (1987).

    Article  PubMed  CAS  Google Scholar 

  • Foster, A. C. and Wong, E. H. F., The novel anticonvulsant MK-801 binds to the activated state of the N-methyl-D-aspartate receptor in rat brain.Br. J. Pharmacol., 91, 403–412 (1987).

    PubMed  CAS  Google Scholar 

  • Glowinski, J. and Iversen, L. L., Regional studies of catecholamine in the rat brain-I. the disposition of3H-norepinephrine,3H-dopamine and3H-DOPA in various regions of the rat.J. Neurochem., 13, 655–669 (1966).

    Article  PubMed  CAS  Google Scholar 

  • Gonzales, R. A., Roper, L. C. and Westbrook, S. L., Cholinergic modification of N-methyl-D-Aspartateevoked [3H]Norepinephrine release from rat cortical slices.J. Pharmacol. Exp. therpeutics., 264, 282–288 (1993).

    CAS  Google Scholar 

  • Greenamyre, J. T. and Maragos, W. F., Neurotransmitter receptors in Alzheimer's disease.Cerebrovasc. Brain Metab. Rev., 5, 61–94 (1993).

    PubMed  CAS  Google Scholar 

  • Greenamyre, J. T., Penny, J. B., D'Amato, C. J. and Young, A. B., Dementia of the Alzheimer' type: changes in hippocampal L-[3H]glutamate binding.J. Neurochem., 48, 543–551 (1987).

    Article  PubMed  CAS  Google Scholar 

  • Hanin, I., Mantione, C. R. and Fisher, A., AF64A-induced neurotoxicity: a potential animal model in Alzheimer's disease, In S. Corkin, K. L. Davis L. H. Growdon, E. Usdin, and R. J. Wurtman (Eds.).Alzheimer's Disease: A report of progress (Aging). Raven, New York, 19, 267–270 (1982).

    Google Scholar 

  • Hortnagl, H., Berger, M. L., Reither, H. and Hornykiewicz, O., Cholinergic deficit induced by ethylcholine aziridinium (AF64A) in rat hippocampus: Effect on glutamatergic systems.Naunyn-Schmiedeberg's Arch. Pharmacol., 344, 213–219 (1991).

    Article  CAS  Google Scholar 

  • Kugler, P., Enzymes involved in glutamatergic and GABAergic neurotransmission.Int. Rev. Cytol., 147, 285–336 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Leventer, S. M., Wulfert, E. and Hanin, I., Time course of ethylcholine aziridinium ion (AF64A)-induced cholinotoxicityin vivo.NeuroPharmacol., 26, 361–365 (1987).

    Article  CAS  Google Scholar 

  • Lim, D. K., Ma, Y. and Yi, E. Y., Effects of intracerebroventricular administration of ethylcholine aziridinium (AF64A) on dopaminergic nervous systems.Arch. Pharm. Res., 19, 23–29 (1996).

    Article  CAS  Google Scholar 

  • Lim, D. K., Wee, S. M., Ma, Y. and Yi, E. Y., Effects of ethylcholine aziridinium, scopolamine, and morphine on learning behaviors in Morris water maze.Arch. Pharm. Res., 18, 346–350 (1995).

    Article  CAS  Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J., Protein measurement with the Folin phenol reagent.J. Biol. Chem., 193, 265–275 (1951).

    PubMed  CAS  Google Scholar 

  • Mantione, C. R., Zigmond, M. J., Fisher, A. and Hanin, I., Selective presynaptic cholinergic neurotoxicity following intrahippocampal AF64A injection in rats.J. Neutochem., 41, 251–255 (1983).

    Article  CAS  Google Scholar 

  • Maragos, W. F., Greenamyre, J. T., Penney, J. B. and Young, A. B., Glutamate dysfunction in Alzheimer's disease: An hypothesis.Trends Neurosci., 10, 65–68 (1987).

    Article  CAS  Google Scholar 

  • Mash, D. C., Flynn, D. D. and Potter, L. T., Loss of M2 muscarinic receptors in the cerebral cortex in Alzheimer's disease and experimental cholinergic denervation.Sci., 228, 1115–1117 (1985).

    Article  CAS  Google Scholar 

  • Meana, J. J., Johansson, B., Herrera-Marschitz, M., O'Connor, W. T., Goiny, M., Parkinson, F. E., Fredholm, B. B. and Ungerstedt, U., Effect of the neurotoxin AF64A on intrinsic and extrinsic neuronal systems of rat neostriatum measured byin vivo microdialysis.Brain Res., 596, 65–72 (1992).

    Article  PubMed  CAS  Google Scholar 

  • Monaghan, D. T. and Cotman, C. W., Assessing glutamatergic involvement in stone maze performance.J. Neurosci., 5, 2909–2919 (1985).

    PubMed  CAS  Google Scholar 

  • Myhrer, T., Animal models of Alzheimer's disease: Glutamatergic denervation as an alternative approach to cholinergic denervation.Neurosci. Biobehav. Rev., 17, 195–202 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Nakahara, N., Igo, Y., Mizobe, F. and Kawanishi, G., Effects of intracerebroventricular injection of AF64A on learning behaviors in rats.Jpn. J. Pharmacol., 48, 121–130 (1988).

    Article  PubMed  CAS  Google Scholar 

  • Nicolls, D. and Attwell, D., The release and uptake of excitatory amino acids.TIPS, 11, 462–468 (1990).

    Google Scholar 

  • Palmer, A. M. and Gershon, S., Is the neuronal basis of Alzheimer's disease cholinergic or glutamatergic?FASEB J., 4, 2745–2752 (1990).

    PubMed  CAS  Google Scholar 

  • Patel, A. J., Hunt, A., Gordon, R. D. and Balazs, R., The activities in different neural cell types of certain enzymes associated with the metabolic compartmentation glutamate.Developmental Brain Res., 4, 3–11 (1982).

    Article  CAS  Google Scholar 

  • Paxinos, G. and Watson, C.,The brain in stereotaxic coordinates. Academic Press, New York, 1986.

    Google Scholar 

  • Pettit, H. O., Lutz, D., Gutierrez, C. and Eveleth, D., I.C.V. infusions of ACPD(1S,3R) attenuate learning in a morris water maze paradigm.Neurosci. Lett., 178, 43–46 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Ransmayr, G., Cervera, P., Hirsch, E. C., Fisher, W. and Agid, Y., Alzheimer's disease: Is the decrease of the cholinergic innervation of the hippocampus related to intrinsic hippocampal pathology?Neurosci., 47, 843–851 (1992).

    Article  CAS  Google Scholar 

  • Shoup, R. E., Allison, L. A. and Mayer, G. S., o-Phthalaldehyde derivatives of amines for high-speed liquid chromatography/electrochemistry.Analytical Chem., 56, 1089–1096 (1984).

    Article  Google Scholar 

  • Sims, N. R., Bowen, D. M., Allen, S. J., Smith, C. C. T., Neary, D., Thomas, D. J. and Davison, A. N., Presynaptic cholinergic dysfunction in patients with dementia.J. Neurochem., 40, 503–509 (1983).

    Article  PubMed  CAS  Google Scholar 

  • Staubli, U., Rogers, G. and Lynch, G., Facilitation of glutamate receptors enhances memory.Proc. Natl. Acad. Sci., 91, 777–781 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Ulas, J., Weihmuller, F. B., Brunner, L. C., Joyce, J. N., Marshall, J. F. and Cotman, C. W., Selective increase of NMDA-sensitive glutamate binding in the striatum of Parkinson's disease, Alzheimer's disease, and mixed Parkinson's disease/Alzheimer's disease patients: an autoradiographic study.J. Neurosci., 14, 6317–6324 (1994).

    PubMed  CAS  Google Scholar 

  • Watkins, J. C., Krogsgaard-Larsen, P. and Honore, T., Structure-activity relationships in the development of excitatory amino acid receptor agonists and competitive antagonists.TIPS, 11, 25–33 (1990).

    PubMed  CAS  Google Scholar 

  • Young, A. B. and Fagg, G. E., Excitatory amino acid receptors in the brain: membrane binding and receptor autoradiographic approaches.TIPS, 11, 126–133 (1990).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, Y., Lim, D.K. Effects of I.C.V. administration of ethylcholine aziridinium (AF64A) on the central glutamatergic nervous systems in rats. Arch. Pharm. Res. 20, 39–45 (1997). https://doi.org/10.1007/BF02974040

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02974040

Key words

Navigation