Skip to main content
Log in

2-(1-Oxyalkyl)-1,4-dioxy-9,10-anthraquinones: Synthesis and evaluation of antitumor activity

  • Research Articles
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Fourty eight derivatives of 2-(1-oxyalkyl)-1,4-dioxy-9,10-anthraquinone were synthesized, and their antitumor activity was evaluated. On the whole, 2-(1-hydroxyalkyl)-1,4-dihydroxy-9,10-anthraquinones (DHAQ=1,4-dihydroxy-9,10-anthraquinone) showed stronger cytotoxic activity againnst L1210 cells than 2-(1-hydroxyalkyl)-1,4-dimethoxy.-9,10-anthraquinones(DMAQ=1,4-dimethoxy-9,10-anthraquinone), implying that free hydroxy groups at C-1 and C-4 of the anthraquinone structure are necessary for the cytotoxic activity. The bioactivity of 2-(1-hydroxyalkyl)-DHAQ derivatives differed according to the size of alkyl group at C-1, while the elongation of alkyl group over 7 carbon atoms failed to enhance, the bioactivity, the derivatives possessing alkyl moiety of 1–6 carbon atoms showed an increase in the cytotoxicity and the antitumor activity in Sarcoma-180; 2-hydroxymethyl-DHAQ (ED50, 15 μg/ml; T/C, 125%), 2-(1-hydroxyethyl)-DHAQ(1.9 μg/ml; 139.2%), 2-(1-hydroxypropyl)-DHAQ (7.2 μg/ml; 135.1%), 2-(1-hydroxybutyl)-DHAQ (10.2 μg/ml; 125.3%), 2-(1-hydroxypentyl)-DHAQ (23.7 μg/ml; 110.1%) and 2-(1-hydroxyhexyl)-DHAQ (58 μg/ml; 108%). Next, 2-(1-Hydroxyalkyl)-DHAQ derivatives were acetylated to produce 2-(1-acetoxyalkyl)-DHAQ analogues. Although the acetylation somewhat enhanced the cytotoxicity, but not the antitumor action. In addition, the presence of phenyl group at C-1' enhanced the cytotoxicity and the T/C value, compared to alkyl groups of same size; 2-(1-hydroxy-1-phenyl)-DHAQ (ED50, 5.6 μg/ml; T/C., 137%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References Cited

  • Abramson, H. N., Banning, J. W., Nachtman, J. P., Roginski, E. T., Sardessai, M., Wormser, H. C., Wu, J., Nagia, Z., Schroeder, R. R., Bernardo, M. M., Synthesis of Anthraquinoyl Glucosaminosides and Studies on the Influence of Aglycone Hydroxyl Substitution on Superoxide Generation, DNA Binding, and Antimicrobial Propertiee.J. Med. Chem, 29(9), 1709–1714 (1986).

    Article  PubMed  CAS  Google Scholar 

  • Andreani, A., Rambaldi, M., Bonazzi, D., Lelli, G., Greci, L., Potential antitumor agents, XIV., 8-Disubstituted anthraquinones.Arch. Pharm., 318, 842–848 (1985).

    Article  CAS  Google Scholar 

  • Baek, K. U., Song, G. Y., Kim, Y., Sok, D. E., and Ahn, B. Z., 2-(1-oxyalkyl)-1,4-dioxynaphthoquinone derivatives: Synthesis and evaluation of their antitumor activity.Arch. d. Pharmazie (Weinheim) 1997, in press.

  • Blanz, J., Mewes, K., Ehninger, G., Proksch, B., Waidelich, D., Greger, B., Zeller, K. P., Evidence for oxidative activation of mitoxantrone in human.Durg. Metab. Dispos., 19, 871–880 (1991).

    CAS  Google Scholar 

  • Bodley, A., Liu, L. F., Israel, M., Seshadri, R., Koseki, Y., Giuliani, F. C., Kschenbaum, S., Silber, R., Potmesil, M., DNA topoisomerase II-mediated interaction of doxorubicin and daunorubicin congeners with DNA.Cancer. Res., 49, 5969–5978 (1989).

    PubMed  CAS  Google Scholar 

  • Brunmark, A. and Cadenas, E., Redox ans inhibition chemistry of quinoid compounds and its biological implications.Free Red. Biol. Med., 7, 435–477 (1988).

    Article  Google Scholar 

  • Charcosset, J. Y., Soues, S., Laval, F., Poisons of DNA topoisomerases I and II.Bull. Cancer (Paris), 80(11), 923–954 (1993).

    CAS  Google Scholar 

  • Chen, K. X., Gresh, N., Pullman, B., A theoretical investigation on the sequence selective binding of mitoxantrone to double-stranded tetranucleotides.Nucleic. Acids. Res., 14, 3799–3812 (1986).

    Article  PubMed  CAS  Google Scholar 

  • Crespi, M. D., Ivanier, S. E., Genovese, J., Baldi, A., Mitoxantrone affects topoisomerase activities in human breast cancer cells.Biochem. Biophys. Res. Commun., 136, 521–528 (1986).

    Article  PubMed  CAS  Google Scholar 

  • Dodd, N. J., Mukherjee, T., Free radical formation from anthracycline antitumour agents and model systems-I. Model naphthoquinones and anthraquinones.Biochem. Pharmacol., 33, 379–385 (1984).

    Article  PubMed  CAS  Google Scholar 

  • Ehninger, G., Schuler, U., Proksch, B., Zeller, K. P., Blanz, J., Pharmacokinetics and metabolism of mitoxantrone. A review.Clin. Pharmacokinet., 18, 365–380 (1990).

    Article  PubMed  CAS  Google Scholar 

  • Finley, K. T., The addition and substitution chemistry of quinones. InThe chemistry of the Quinoid Compounds (Parai, s. ed.), Part II, pp. 878–1144, 1974, John wiley, London.

    Google Scholar 

  • Fisher, G. R., Brown, J. R., Patterson, L. H., Involvement of hydroxyl radical formation and DNA strand breakage in the cytotoxicity of anthraquinone antitumour agents.Free. Radic. Res. Commun., 11, 117–125 (1990).

    Article  PubMed  CAS  Google Scholar 

  • Fisher, G. R., Gutierrez, P. L., Oldcorne, M. A., Patterson, L. H., NAD(P)H(quinoneacceptor) oxidoreductase(DT-diaphorese)-mediated two electron reduction of anthraquinone-based antitumour agents and generation of hydroxyl radicals.Biochem. Pharmacol., 43, 575–585 (1992).

    Article  PubMed  CAS  Google Scholar 

  • Frederick, C. A., Williams, L. D., Ughetto, G., Van Der Marel, G. A., Van Boom, J. H., Wang, A. H., Structural comparison of anticancer drug-DNA complexes: adriamycin and daunomycin.Biochemistry., 29, 2538–2549 (1990).

    Article  PubMed  CAS  Google Scholar 

  • Gant, T. W., and Cohen, G. M., Reaction of glutathione or amino acids with quinones forming semiquinone radicals. InFree Radicals, Oxidants stress and Drug Action (C. Rice-Evans, ed.), pp. 377–397 (1987).

  • Gaudiano, G. and Koch, T. H., Redox cjemistry of anthracycline antitumor drugs and use of captodative radicals as tools for its elucidation and control.Chem. Res. Toxicol., 4, 2–16 (1991).

    Article  PubMed  CAS  Google Scholar 

  • Isabella, P. D., Capranico, G., Palumbo, M., Sissi, C., Krapcho, A. R., Zunino, F., Sequence selectivity of topoisomerase II DNA cleavage stimulated by mitoxantrone derivatives: relationships to drug DNA binding anf cellular effects.Mol. Pharmacol., 43, 715–721 (1993).

    PubMed  Google Scholar 

  • Islam, S. A., Neidle, S., Gandecha, B. M., Partridge, M., Patterson, L. H., Brown, J. R., Comparative Computer Graphics and Solution Studies of the DNA Interaction of Substituted Anthraquinones Based on Doxorubicin and Mitoxantrone.J. Med. Chem., 28, 857–864 (1985).

    Article  PubMed  CAS  Google Scholar 

  • Itokawa, H., Ibraheim, Z. Z., Qiao, Y. F., Anthraquinones, naphthohydroquinones and naphtho hydroquinone dimers from Rubia cordifolia and their cytotoxic activity.Chem. Pharm. Bull., 41, 1869–1872 (1993).

    PubMed  CAS  Google Scholar 

  • Jeziorek, D., Dyl, D., A theoretical study of the mechanism of oxygen binding by model anthraquinone. I: Quantum mechanical evaluation the oxygen-binding sites of 1, 4-hydroquinone.Anticancer. Drug. Des., 8, 223–235 (1993).

    PubMed  CAS  Google Scholar 

  • Kapuscinski, J., Darzynkiewicz, Z., Interactions of atitumor agents Ametantrone and Mitoxantrone with double-stranded DNA.Biochem. Pharmacol. 34(24), 4203–4213 (1985).

    Article  PubMed  CAS  Google Scholar 

  • Kong, X. B., Rubin, L., Chen, L. I., Ciszewska, G., Watanabe, K. A., Tong, W. P., Sirotnak, F. M., and Chou, T. C., Topoisomerase II-mediated DNA cleavage activity and irreversibility of cleavable complex formation induced by DNA intercalation with alkylating capability.Mol. Pharmacol., 41, 237–244 (1992).

    PubMed  CAS  Google Scholar 

  • Koyama, M., Takahashi, K., Chou, T. C., Darzynkiewicz, Z., Kapuscinski, J., Rosskelly, T., and Watanabe, K. A., Intercalating Agents with Covalent Bond Forming Capability. A Novel Type of Potential Anticancer Agents. Dirivatives of Chrysophanol and Emodin.J. Med. Chem., 32, 1594–1599 (1989).

    Article  PubMed  CAS  Google Scholar 

  • Krapcho, A. P., Getahun, Z., Avery, Jr K. L., Vargas, K. J., and Hacker, M. P., Spinelli, S., Pezzoni, G., Manzotti, C., Synthesis and antitumor evaluations of symmetrically and unsymmetrically substituted 1, 4-bis[(aminoalky)amino]anthracene-9, 10-diones and 1,4-bis[(aminoalky)amino]-5,8-dihydroxyan thracene-9, 10-diones.J. Med. Chem., 34, 2373–2380 (1991).

    Article  PubMed  CAS  Google Scholar 

  • Kuzuya, M., Noguchi, A., Kaeai, K., Quantum chemical study for genotoxic and antitumor activities of hydroxyanthraquinonesRegul. Toxicol. Pharmacol., 13, 185–194 (1991).

    Article  PubMed  CAS  Google Scholar 

  • Lin, A. J., Cosby, L. A., Shansky, C. W. and Sartorelli, A. C., Potential bioreductive alkylating agents. I. Benzoquinone derivatives.J. Med. Chem., 15, 1247–1252 (1972).

    Article  PubMed  CAS  Google Scholar 

  • Lin, T. S., Teicher, B. A. and Sartorelli, A. C., 2-Methylanthraquinone Derivatives as Potential Bioreductive alkylating Agents.J. Med. Chem., 23, 1237–1242 (1980).

    Article  PubMed  CAS  Google Scholar 

  • Mewes, K., Blanz, J., Ehninger, G., Gebhardt, R., Zeller, K. P., Cytochrome P-450-induced cytotoxicity of mitoxantrone by formation of electrophilic intermediate.Cancer. Research., 53, 5135–5142 (1993).

    PubMed  CAS  Google Scholar 

  • Monks, T. J., Hanzlik, R. P., Cohen, G. M., Ross, D., and Graham, D. G., Contemporary Issuse in Toxicology. Quinone Chemistry and Toxicity.Toxicol. Appl. Pharmacol., 112, 2–16 (1992).

    Article  PubMed  CAS  Google Scholar 

  • Morier-Teissier, E., Boitte, N., Helbecque, N., Berier, J. L., Pomery, N., Synthesis and antitumor properties of an anthraquinone bisubtituted by the copper chelating peptide Gly-Gly-His.J. Med. Chem., 36, 2084–2090 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee, T., Land, E. J., Swallow, A. J., and Bruce, M., One electron reduction of adriamycin and daunomycin: Short-term stability of the semiquinones.Arch. Biochem. Biophys. 272, 450–458 (1989).

    Article  PubMed  CAS  Google Scholar 

  • Palmer, B. D., Rewcastle, G. W., Atwell, G. J., Potential antitumor agents. Chromophore requirement forin vivo antitumor activity among the general class of linear tricyclic carboxamide.J. Med. Chem., 31, 707–712 (1988).

    Article  PubMed  CAS  Google Scholar 

  • Patterson, L. H., Rationale for the use of aliphatic N-oxides of cytotoxic anthraquinones as prodrug DNA binding agents: a new class of bioreductive agent.Cancer. Metastasis. Rev., 12, 119–134 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg, L. S., Carvlin, M. J., Krugh, T. R., The antitumor agent mitoxantrone binds cooperatively to DNA; evidence for heterogeneity in DNA conformation.Biochemistry., 25, 1002–1008 (1986).

    Article  PubMed  CAS  Google Scholar 

  • Terada, A., Tanoue, Y., Hatada, A. and Sakamoto, H., Synthesis of shikhikin and related compounds.Bull. Chem. Soc. JPN., 60, 205–213 (1987).

    Article  CAS  Google Scholar 

  • Tewey, K. M., Rowe, T. C., Yang, L., Halligan, B. D. and Lin, L. F., Adriamycin induced DNA damage mediated by mammalian DNA topoisomerase II.Science (Washington DC)., 226. 466–468 (1984).

    Article  CAS  Google Scholar 

  • Traganos, F., Dihydroxyanthraquinon and related bis (substituted) aminoanthrquinons: a novel class of antitumor agents.Pharmacol. Ther., 22, 199–214 (1983).

    Article  PubMed  CAS  Google Scholar 

  • Yoshio, H., Makoto, K., Chemical studies on the natural anthrquinone I. Synthesis of Munjkstin Emodin and 3-hydroxy-2-methylanthraquinone.Chem. Pharm Bull., 21, 2790–2795 (1973).

    Google Scholar 

  • Zunino, F., Capranico, G., DNA topoisomerase II as the primary target of anti-tumor anthracyclins.Anticancer. Drug. des., 5, 307–317 (1990).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, GZ., Song, GY., Zheng, XG. et al. 2-(1-Oxyalkyl)-1,4-dioxy-9,10-anthraquinones: Synthesis and evaluation of antitumor activity. Arch. Pharm. Res. 21, 198–206 (1998). https://doi.org/10.1007/BF02974028

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02974028

Key words

Navigation