Skip to main content
Log in

Structure-activity relationship of fluoroquinolone inEscherichia coli

  • Research Articles
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Structure-activity relationship of 20 fluoroquinolones was studied using the susceptible and 4 resistantEscherichia coli which were developed against 4 fluoroquinolones [ciprofloxacin (1), KR-10755 (6), norfloxacin (2), and ofloxacin (3)] in our laboratory. The C-7 and C-8 substituents of fluoroquinolone were important in various functions such as the inhibitory activity on DNA gyrase, permeability, and efflux. Among 20 fluoroquinolones, compounds with a 3-methyl-3,7-diazabicyclo[3.3.0]octan-1(5)-ene-7-yl substituent at the C-7 position or a chlorine substituent at the C-8 position showed a good inhibitory activity on DNA gyrase (especially a mutated DNA gyrase). Compounds with a 3,7-diazabicyclo [3.3.0]octan-1(5)-ene-7-yl substituent at the C-7 position showed good permeability in the susceptible and resistant strains, while compounds with a fluorine substituent at the C-8 position were less effluxed from cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References Cited

  • Chu, D. T. W. and Fernandes, P. B., Structure-activity relationships of the fluoroquinolones.Antimicrob. Agents Chemother., 33, 131–135 (1989).

    PubMed  CAS  Google Scholar 

  • Coll, R., Gargallo-Viola, D., Tudela, E., Xicota, M. A., Llovera, S. and Guinea, J., Antibacterial activity pharmacokinetics of four new 7-azetidinyl fluoroquinolones.Antimicrob. Agents Chemother., 40, 274–277 (1996).

    PubMed  CAS  Google Scholar 

  • Gootz, T. D., McGuirk, P. R., Moynihan, M. S. and Haskell, S. L., Placement of alkyl substituents on the C-7 piperazine ring of fluroquinolones: Dramatic differential effects on mammalian topoisomerase II and DNA gyrase.Antimicrob. Agents Chemother., 38, 130–133 (1994).

    PubMed  CAS  Google Scholar 

  • Heisig, P., Schedletzky, H. and Falkenstein-Paul, H., Mutations in the gyrA gene of a highly fluoroquinolone resistant clincal isolate ofEscherichia coli.Antimicrob. Agents Chemother., 39, 696–701 (1993).

    Google Scholar 

  • Hirai, K., Aoyama, H., Irikura, T., Iyobe, S. and Mitsuhashi, S., Differences in susceptibility to quinolones of outer membrane mutants ofSalmonella typhimurium andEscherichia coli.Antimicrob. Agents Chemother., 29, 535–538 (1986).

    PubMed  CAS  Google Scholar 

  • Kim, K., Lee, S. and Lee, Y., Norfloxain resistance mechanism ofE. coli 11 andE. coli 101-clinical isolates ofEschericha coli in Korea.Arch. Pharm. Res., 19, 353–358 (1996).

    Article  CAS  Google Scholar 

  • Kitamura, A., Hoshino, K., Kimura, Y., Hayakawa, I. and Sato, K., Contribution of the C-8 substituent of DU-6859a, a new potent fluoroquinolone, to its activity against DNA gyrase mutants ofPseudomonas aeruginosa.Antimicrob. Agents Chemother., 39, 1467–1471 (1995).

    PubMed  CAS  Google Scholar 

  • Klopman, G., Fercu, D., Renau, T. E. and Jacobs, M. R., N-1-tert-Butyl-substituted quinolones:in vitro anti-Mycobacterium avium activities and structure-activity relationship studies.Antimicrob. Agents Chemother., 40, 2637–2643 (1996).

    PubMed  CAS  Google Scholar 

  • Lee, Y., Kim, K., Pyun, H.-E. and Park, W., Characterization of ciprofloxacin, HK3140, norfloxacin, and ofloxacin resistant strains ofEscherichia coli.Korean Biochem. J., 25, 134–140 (1992).

    CAS  Google Scholar 

  • Mitscher, L. A., Devasthale, P. D. and Zavod, R., Structure-activity relationships, In Hooper, D. C., Wolfson, J. S. (Eds.),Quinolone antimicrobial agents, American Society for Microbiology, Washington D. C., pp. 3–52, 1993.

    Google Scholar 

  • Mitscher, L. A., Zavoid, R. M. and Sharma, P. N., Structure-activity relationships of the newer quinolone antibacterial agents, In Fernandes P. B. (Eds.),Quinolones, J. R. Prous Science Publisher, Barcelona, pp 3–134, 1989.

    Google Scholar 

  • Pan, X.-S., Ambler, J., Mehta, S. and Fisher, L. M., Involvement of topoisomerase IV and DNA gyrase as ciprofloxacin targets inStreptococcus pneumoniae.Antimicrob. Agents Chemother., 40, 2321–2326 (1996).

    PubMed  CAS  Google Scholar 

  • Park, S., Lee, S. and Lee, Y., Norfloxacin resistance mechanism ofEscherichia coli 59-a clinical isolate in Korea.Mol. Cells, 6, 469–472 (1996).

    CAS  Google Scholar 

  • Shen, L. L., Mitscher, L. A., Sharma, P. N., O'Donnell, T. J., Chu, D. W. T., Cooper, C. S., Rosen, T. and Pernet, G., Mechanism of inhibition of DNA gyrase by quinolone antibacterials: a cooperative drug-DNA binding model.Biochem., 28, 3886–3894 (1989).

    Article  CAS  Google Scholar 

  • Tillotson, G. S., Quinolones: structure-activity relationships and future predictions.J. Med. Microbiol., 44, 320–324 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Wentland, M. P., Structure-activity relationships of fluoroquinolones, In Siporin, C., Heifetz, C. L., and Domagala, J. M. (Eds.),The new generation of quinolones. Marcel Decker, Inc., New York, pp. 1–44, 1990.

    Google Scholar 

  • Wolfson, J. S. and Hooper, D. C., The fluoroquinolones: structures, mechanisms of action and resistance, and spectra of activityin vitro.Antimicrob. Agents Chemother., 28, 581–586 (1985).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, S., Park, T. & Lee, Y. Structure-activity relationship of fluoroquinolone inEscherichia coli . Arch. Pharm. Res. 21, 106–112 (1998). https://doi.org/10.1007/BF02974013

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02974013

Key words

Navigation