Skip to main content
Log in

Classification of permutations and cycles of maximum topological entropy

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

Iff is a continuous self-map of a compact interval we can represent each finite fully invariant set off by a permutation. We can then calculate the topological entropy of the permutation. This provides us with a numerical measure of complexity for any map which exhibits a given permutation type. In this paper we present cyclic and noncyclic permutations which have maximum topological entropy amongst all cyclic or noncyclic permutations of the same length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Block andW. A. Coppel,Dynamics in One Dimension, Lecture Notes in Math.,1513, Springer-Verlag, Berlin and New York, (1992).

    MATH  Google Scholar 

  2. L. Block, J. Guckenheimer, M. Misiurewicz andL. S. Young,Periodic points and topological entropy for one-dimensional maps. Lecture Notes in Math.,819, Springer-Verlag, Berlin and New York, (1980), 18–34.

    Google Scholar 

  3. W. Geller andJ. Tolosa,Maximal Entropy Odd Orbit Types. Transactions Amer. Math. Soc.,329, No. 1, (1992), 161–171.

    Article  MATH  MathSciNet  Google Scholar 

  4. W. Geller andB. Weiss,Uniqueness of maximal entropy odd orbit types. Proc. Amer. Math. Soc.,123, No. 6, (1995), 1917–1922.

    Article  MATH  MathSciNet  Google Scholar 

  5. W. Geller andZ. Zhang,Maximal entropy permutations of even size. Proc. Amer. Math. Soc.,126, No. 12, (1998), 3709–3713.

    Article  MATH  MathSciNet  Google Scholar 

  6. I. Jungreis,Some Results on the Sarkovskii Partial Ordering of Permutations. Transactions Amer. Math. Soc.,325, No. 1, (1991), 319–344.

    Article  MATH  MathSciNet  Google Scholar 

  7. D. M. King,Maximal entropy of permutations of even order. Ergod. Th. and Dynam. Sys.,17, No. 6, (1997), 1409–1417.

    Article  MATH  Google Scholar 

  8. D. M. King,Non-uniqueness of even order permutations with maximal entropy. Ergod. Th. and Dynam. Sys.,20, (2000), 801–807.

    Article  MATH  Google Scholar 

  9. D. M. King and J. B. Strantzen,Maximum entropy of cycles of even period. Mem. Amer. Math. Soc.,152, No. 723, 2001.

  10. D. M. King and J. B. Strantzen,Cycles of period 4k which attain maximum topological entropy. (submitted for publication).

  11. M. Misiurewicz and Z. Nitecki,Combinatorial Patterns for maps of the Interval. Memoirs Amer. Math. Soc.,94, No. 456, (1991).

  12. M. Misiurewicz andW. Szlenk,Entropy of piecewise monotone mappings. Studia Math.,67, (1980), 45–63.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deborah M. King.

Additional information

Supported by ARC grant F10007415.

Rights and permissions

Reprints and permissions

About this article

Cite this article

King, D.M., Strantzen, J.B. Classification of permutations and cycles of maximum topological entropy. Qual. Th. Dyn. Syst. 4, 77–97 (2003). https://doi.org/10.1007/BF02972824

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02972824

Key Words

Navigation