Skip to main content
Log in

Cellulose: Energy source for microbial protein

  • Published:
Economic Botany Aims and scope Submit manuscript

Abstract

Mixed cultures of bacteria anaerobically attacking cellulosic materials produce sufficient acetic, butyric, lactic and formic acids and ethanol and glucose to account for most of the original carbon. These products contain 60 to 90% of the free energy of the cellulose and are all usable as carbon sources for the aerobic growth of yeast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. Annison, E. F., and D. Lewis. 1959. Metabolism in the rumen. Wiley, New York. 184 p.

    Google Scholar 

  2. Buswell, A. M., and H. F. Mueller. 1952. Mechanism of methane fermentation. Ind. Eng. Chem.44:550–552.

    Article  CAS  Google Scholar 

  3. Enebo, L. 1949. Symbiosis in thermophilic cellulose fermentation. Nature163:805.

    Article  PubMed  CAS  Google Scholar 

  4. Gilbert, Nathan, I. A. Hobbs, and J. D. Levine. 1952. Hydrolysis of wood using dilute sulfuric acid. Ind. Eng. Chem.44:1712–1720.

    Article  CAS  Google Scholar 

  5. Hall, Benedict M. 1957. Yeast assimilation of cellulose decomposition products. Proc. Penna. Acad. Sci.31:49–55.

    Google Scholar 

  6. —. 1960a. Performance of roller agitators for cultivation of microorganisms. Appl. Microbiol.8:378–382.

    PubMed  CAS  Google Scholar 

  7. —. 1960b. A continuous-flow fermenter for cellulose. Proc. Penna. Acad. Sci.34:39–44.

    CAS  Google Scholar 

  8. Heukelekian, H. 1953. Microbiology of water and sewage. Ann. Rev. Microbiol.7:461–472.

    Article  CAS  Google Scholar 

  9. Hungate, R. E. 1950. The anaerobic mesophilie cellulolytie bacteria. Bacteriol. Rev.14:1–49.

    PubMed  CAS  Google Scholar 

  10. Jennison, M. W., C. G. Richberg, and Arthur E. Krikszens. 1957. Physiology of wood-rotting basidiomycetes. II. Nutritive composition of mycelium grown in submerged culture. Appl. Microbiol.5: 87–95.

    PubMed  CAS  Google Scholar 

  11. Khouvine, Y. 1923. Ann. Inst. Pasteur.37:711–752. Cited in Thimann (20), page 602.

    CAS  Google Scholar 

  12. Koistinen, O. A. 1946. The use of carbon dioxide and methane for synthetic processes in the fermentation of cellulose. Suomen Kemistilehti B19,122:1–3.

    Google Scholar 

  13. Langwell, H. 1932. Cellulose fermentation. J. Soc. Chem. Ind.51:988–994.

    Article  CAS  Google Scholar 

  14. McBee, R. H. 1948. The culture and physiology of a thermophilic cellulose-fermenting bacterium. J. Bacteriol.56:653–663.

    PubMed  CAS  Google Scholar 

  15. Pringsheim, H., and S. Lichtenstein. 1920. Versuche zur Anreicherung von Kraftstroh mit Pilzeiweisz. Cellulosechemie1: 29–39.

    CAS  Google Scholar 

  16. Scott, S. W., E. B. Fred, and W. H. Peterson. 1930. Products of the thermophilie fermentation of cellulose. Ind. Eng. Chem.22(7):731–735.

    Article  CAS  Google Scholar 

  17. Sijpestijn, A. K. 1948. Cellulose decomposing bacteria from the rumen of cattle. Dissertation, Leiden. Cited in Thimann (20), page 602.

  18. Siu, R. G. H. 1951. Microbial decomposition of cellulose. Reinhold. New York. 531 p.

  19. Spector, Win, 8. 1956. Handbook of biological data. Wright Air Development Center Technical Report 56–273.

  20. Thimann, Kenneth V. 1963. The life of bacteria. 2d ed., Macmillan, New York. 909 p.

    Google Scholar 

  21. Veldhuis, M. K., L. M. Christensen, and E. I. Fulmer. 1936. Production of ethanol by the thermophilie fermentation of cellulose. Ind. Eng. Chem.28:430–433.

    Article  CAS  Google Scholar 

  22. Virtanen, Artturi I., and O. A. Koistinen. 1944. Fermentation of the native cellulose and pentosans in wood. Svensk Kemist Tidskrift.56:391–400.

    CAS  Google Scholar 

  23. Wickerham, L. J. 1951. Taxonomy of yeasts. U. S. Dept. Agr. Tech. Bull. 1029. 56 p.

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was aided by grants from the Temple University Committee on Research.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mark hall, B. Cellulose: Energy source for microbial protein. Econ Bot 19, 46–52 (1965). https://doi.org/10.1007/BF02971185

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02971185

Keywords

Navigation