Skip to main content
Log in

The transport of organic cations in the small intestine: Current knowledge and emerging concepts

  • Articles
  • Drug Efficacy
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

A wide variety of drugs and endogenous bioactive amines are organic cations (OCs). Approximately 40% of all conventional drugs on the market are OCs. Thus, the transport of xenobiotics or endogenous OCs in the body has been a subject of considerable interest, since the discovery and cloning of a family of OC transporters, referred to as organic cation transporter (OCTs), and a new subfamily of OCTs, OCTNs, leading to the functional characterization of these transporters in various systems including oocytes and some cell lines. Organic cation transporters are critical in drug absorption, targeting, and disposition of a drug. In this review, the recent advances in the characterization of organic cation transporters and their distribution in the small intestine are discussed. The results of thein vitro transport studies of various OCs in the small intestine using techniques such as isolated brush-border membrane vesicles, Ussing chamber systems and Caco-2 cells are discussed, andin vivo knock-out animal studies are summarized. Such information is essential for predicting pharmacokinetics and pharmacodynamics and in the design and development of new cationic drugs. An understanding of the mechanisms that control the intestinal transport of OCs will clearly aid achieving desirable clinical outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akaike, N., Yatani, A., Nishi, K., Oyama, Y., and Kuraoka, S., Permeability to various cations of the voltage-dependent sodium channel of rat single heart cells.J. Pharmacol. Exp. Ther., 228, 225–229 (1984).

    PubMed  CAS  Google Scholar 

  • Benowitz, N. L., Pharmacokinetic aspects of cigarette smoking and nicotine addiction.New. Eng. J. Med., 319, 1318–1330 (1988).

    PubMed  CAS  Google Scholar 

  • Bleasby, K., Chauhan, S., and Brown, C. D. A., Characterization of MPP+ secretion across human intestinal Caco-2 cell monolayers: role of P-glycoprotein and a novel Na+-dependent organic cation transport mechanism.Br. J. Pharmacol., 129, 619–615 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Busch A. E., Quester, S., Ulzheimer J. C., Waldegger, S., Gorboulev, V., Amdt, P., Lang, F., and Koepsell, H., Electronic properties and substrate specificity of the polyspecific rat cation transporter rOCT1.J. Biol. Chem., 271, 32577–32604 (1996).

    Google Scholar 

  • Cova, E., Laforenza, U., Gastaldi, G., Sambuy, Y., Tritto, S., Faelli, A., and Ventura, U., Guanidine transport across the apical and basolateral membrane of human intestinal Caco-2 cells is mediated by two different mechanism.J. Nutr., 132, 1995–2003 (2002).

    PubMed  CAS  Google Scholar 

  • Dresser, M. J., Leabman, M. K., and Giacomini, K. M., Transporters involved in the elimination of drugs in the kidney: organic anion transporters and organic cation transporters.J. Pharm. Sci., 90, 397–421 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Dudeja P. K., Tyagi S., Kavilaveettil, R. J., Gill, R., and Said, H. M., Mechanism of thiamine uptake by human jejunal brush-border membrane vesicles.Am. J. Physiol. Cell. Physiol., 281, C786–792 (2001).

    PubMed  CAS  Google Scholar 

  • Engel, G., Hoyer, D., Kalkman, H. O., and Wick, M. B., Identification of 5HT2 receptors on longitudinal muscle of guinea pig ileum.J. Recept. Res., 4, 113–126 (1984).

    PubMed  CAS  Google Scholar 

  • Flagstad, A., Nielsen, P., and Trojaborg, W., Pharmacokinetics and pharmacodynamics of guanidine hydrochloride in a hereditary myasthenia gravis-like disorder in dogs.J. Vet. Pharmacol. Ther., 9, 318–324 (1986).

    Article  PubMed  CAS  Google Scholar 

  • Fukuda, A., Saito, H., and Inui, K. I., Transport mechanisms of nicotine across the human intestinal epithelial cell line Caco-2.J. Pharmacol. Exp. Ther., 302, 532–538 (2002).

    Article  CAS  Google Scholar 

  • Gorboulev, V., Ulzheimer, J. C., Akhoundova, A., Ulzheimer-Teuber, I., Karbach, U., Guester, S., Baumann, C., Lang, F., Busch, A. E., and Koepsell, H., Cloning and characterization of two human polyspecific organic cation transporters.D.N.A. Cell. Biol., 16, 871–881 (1997).

    CAS  Google Scholar 

  • Grundemann, D., Gorboulev, V., Gambaryan, S., and Koepsell, V. H., Drug Excretion mediated by a new prototype of polyspecific transporter.Nature, 372, 549–552 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Grundemann, D., Babin-Ebell, J., Martel, F., Ording, N., Schmidt, A., and Schomig, E., Primary structure and functional expression of the apical organic cation transporter from kidney epithelial LLC-PK1 cells.J. Biol. Chem., 272, 10408–10413 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Grundemann, D., Schechinger, B., Rappold, G. A., and Schomig, E., Molecular identification of the corticosterone-sensitive extraneuronal catecholamine transporter.Nature neurosci., 1, 349–352 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Grundemann, D., Liebich, G., Kiefer, N., Koster, S., and Schomig, E., Selective substrate for non-neuronal monoamine transporters.Mol. Pharmacol., 56, 1–10 (1999).

    PubMed  CAS  Google Scholar 

  • Hsing, S., Gatmaitan, Z., and Arias, I. M., The function of Gp170, the multidrug-resistance gene product, in the brush border of rat intestinal mucosa.Gastroenerology, 102, 879–885 (1992).

    CAS  Google Scholar 

  • Hunter, J., Hirst, B. H., and Simmons, N. L., Drug absorption limited by P-glycoprotein-mediated secretory drug transport in human intestinal epithelial Caco-2 cell layers.Pharm. Res., 10, 743–749 (1993a).

    Article  PubMed  CAS  Google Scholar 

  • Hunter, J., Jepson, M. A., Tsuruo, T., Simmons N. L., and Hirst B. H., Functional expression of P-glycoprotein in apical membranes of human intestinal Caco-2 cells. Kinetics of vinblastine secretion and interaction with modulators.J. Biol. Chem., 268, 14991–14997 (1993b).

    PubMed  CAS  Google Scholar 

  • Imada-Shirakata, Y., Kotera, T., Ueda, S., and Okuma, M., Serotonin activates electrolyte transport via 5HT2A receptor in colonic crypt cells.Biochem. Biophys. Res. Commun., 230, 437–441 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Israili, Z. H. and Dayton, P., Enhancement of xenobiotic elimination: role of intestinal excretion.Drug. Metab. Rev., 15, 1123–1159 (1984).

    Article  PubMed  CAS  Google Scholar 

  • Javitch, J. A., D'Amato, R. J., Strittmatter, S. M., and Snyder, S. H., Parkinsonism-inducing neurotoxin N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine: uptake of the metabolite N-methyl-4-phenylpyridinium by dopamine neurons explains selective toxicity.Proc. Natl. Acad. Sci. U.S.A., 82, 2173–2177 (1985).

    Article  PubMed  CAS  Google Scholar 

  • Jonker, J. W., Wagenaar, E., Mol, C. A. A. M., Buitelaar, M., Koepsell, H., Smit, J. W., and Schinkel, A. H., Reduced hepatic uptake and intestinal excretion of organic cation in mice with a targeted disruption of the organic cation transporter 1 (Oct1[Slc22al]) gene.Mol. Cell Biol., 21, 5471–5477 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Jonker, J. W., Wagenaar, E., Eijl, S., and Schinkel, A. H., Deficiency in the organic cation transporters 1 and 2 (Oct1/Oct2[Slc22a1/Slc22a2]) in mice abolishes renal secretion of organic cations.Mol. Cell Biol., 23, 7902–7908 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Kamath, A. V., Darling, I. M., and Morris, A. E., Choline uptake in human intestinal Caco-2 cells is carrier-mediated.J. Nutr., 133, 2607–2611 (2003).

    PubMed  CAS  Google Scholar 

  • Karbach, U., Kricke, J., Meyer-Wentrup, F., Gorboulev, V., Volk, C., Loffing-Cueni, D., Kaissling, B., Bachmann, S., and Koepsell, H., Localization of organic cation transporters OCT1 and OCT2 in rat kidney.Am. J. Physiol. Renal. Physiol., 279, F679-F687 (2000).

    PubMed  CAS  Google Scholar 

  • Katsura, T. and Inui, K., Intestinal absorption of drugs mediated by drug transporters” mechanisms and regulation.Drug. Metab. Pharmacokinet., 18, 1–15 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Kekuda, R., Prasad, P. D., Wu, X., Wang, H., Fei, Y. J., Leibach, F. H., and Ganapathy, V., Cloning and functional characterization of a potential-sensitive, polyspecific organic cation transporter (OCT3) most abundantly expressed in placenta.J. Biol. Chem., 273, 15971–15979 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Kim, M. K., Lewei, H., Choi, M. K., Han, Y. H., Kim, D. D., Chung, S. J., and Shim, C. K., Dose dependency in the oral bioavailability of an organic cation model, tributylmethyl ammonium (TBuMA), in rats: association with the saturation of efflux by the P-gp system on the apical membrane of the intestinal epithelium.J. Pharm. Sci., 94, 2644–2655 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Koepsell, H., Organic cation transporters in intestine, kidney, liver, and brain.Annu. Rev. Physiol., 60, 243–266 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Koepsell, H., Schmitt, B. M., and Gorboulev, V., Organic cation transporters.Rev. Physiol. Biochem. Pharmacol., 150, 36–90 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Kuo, S. M., Whitby, B. R., Artursson, P., and Ziemniak, J. A., The contribution of intestinal secretion to the dose-dependent absorption of celiprolol.Pharm. Res., 11, 648–653 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Laforenza, U., Orsenigo, M. N., and Rindi, G., A thiamine/H+ antiport mechanism for thiamine entry into brush border membrane vesicles from rat small intestine.J. Membrane Biol., 161, 151–161 (1998).

    Article  CAS  Google Scholar 

  • Lazaruk, K. D. A. and Wright, S. H., MPP+ is transported by the TEA-H+ exchanger of renal brush-border membrane vesicles.Am. J. Physiol., 258, F597-F605 (1990).

    PubMed  CAS  Google Scholar 

  • Lee, K., Ng, C., Brouwer, L. R., and Thakker, D. R., Secretory transport of ranitidine and famotidine across Caco-2 cell monolayers.J. Pharmacol. Exp. Ther., 303, 574–580 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Lee, W. I. and Kim, R. B., Transporters and renal drug elimination.Annu. Rev. Pharmacol. Toxicol., 44, 137–166 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Nieto, C. E., You, G., Bush, K. T., Barros, E. J., Beier, D. R., and Nigam, S. K., Molecular cloning and characterization of NKT, a gene product related to the organic cation transporter family that is almost exclusively expressed in the kidney.J. Biol. Chem., 272, 6471–6478 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Martel, F., Martins, M. J., and Azevedo, I., Inward transport of [3H]MPP+ in freshly isolated rat hepatocytes: evidence for interaction with catecholamines.Naunyn-Schmiedeberg's Arch. Pharmacol., 354, 305–311 (1996a).

    CAS  Google Scholar 

  • Martel, F., Vetter, T., Russ, H., Grundemann, D., Azevedo, I., Koepsell, H., and Schomig, E., Transport of small organic cations in the rat liver: The role of the organic cation transporter OCT1.Naunyn Schmiedebergs Arch. Pharmacol., 354, 320–326 (1996b).

    PubMed  CAS  Google Scholar 

  • Martel, F., Martin, M. J., Hipolito-Reis, C., and Azevedo, I., Inward transport of [3H]-1-methyl-4-phenylpyridinium in rat isolated hepatocytes: putative involvement of a P-glycoprotein transporter.Br. J. Pharmacol., 119, 1519–1524 (1996c).

    PubMed  CAS  Google Scholar 

  • Martel, F., Martins, M. J., Calhau, C., Hipolito-Reis, C., Azevedo, I., Postnatal development of organic cation transport in the rat liver.Pharmacol. Res., 37, 131–136 (1998a).

    Article  PubMed  CAS  Google Scholar 

  • Martel, F., Calhau, C., and Hipolito-Reis, C., Effect of bile duct obstruction on hepatic uptake of 1-methyl-4-phenylpyridinium in the rat.Pharmacol. Res., 37, 497–504 (1998b).

    Article  PubMed  CAS  Google Scholar 

  • Martel, F., Martin, M. J., Calhau, C., and Azevedo, I., Comparison between uptake2 and rOCT1: effects of catecholamines, methanephrines and corticosterone.Naunyn-Schmiedeberg's Arch. Pharmacol., 359, 303–309 (1999).

    Article  CAS  Google Scholar 

  • Martel, F., Calhau, C., and Azevedo, I., Characterization of the transport of the organic cation [3H]MPP+ in human intestinal epithelial (Caco-2) cells.Naunyn-Schmeideberg's Arch. Pharmacol., 316, 505–513 (2000).

    Article  Google Scholar 

  • Martel, F., Grundemann, D., Calhau, C., and Schomig, E., Apical uptake of organic cations by human intestinal Caco-2 cells: putative involvement of ASF transporter.Naunyn-Schmeideberg's Arch. Pharmacol., 313, 40–49 (2001).

    Article  Google Scholar 

  • Martel, F., Monteiro, R., and Lemos, C., Uptake of serotonin at the apical and basolateral membranes of human intestinal epithelial (Caco-2) cells occurs through the neuronal serotonin transport (SERT).J. Pharmacol. Exp. Ther., 306, 355–362 (2003).

    Article  PubMed  CAS  Google Scholar 

  • McCleskey, E. W. and Almers, W., The Ca+ channel in skeletal muscle is a large pore.Proc. Natl. Acad. Sci. U.S.A., 82, 7149–7153 (1985).

    Article  PubMed  CAS  Google Scholar 

  • Melamed, E., Rosenthal, J., Cohen, O., Globus, M., and Uzzan, A., Dopamine but not norepinephrine or serotonin uptake inhibitors protect mice against neurotoxicity of MPTP.Eur. J. Pharmacol., 226, 179–181 (1985).

    Article  Google Scholar 

  • Miyamoto, K., Ganapathy, V., and Leibach, F. H., Transport of guanidine in rabbit intestinal brush-border membrane vesicles.Am. J. Physiol., 255, G85-G92 (1988).

    PubMed  CAS  Google Scholar 

  • Mizuuchi, H., Katsura, T., Saito, H., Hashimoto, Y., and Inui, K. I., Transport Characteristics of diphenhydramine in human intestinal epithelial Caco-2 cells: Contribution of pH-dependent transport system.J. Pharmacol. Exp. Ther., 290, 388–392 (1999).

    PubMed  CAS  Google Scholar 

  • Mizuuchi, H., Katsura, T., Hashimoto, Y., and Inui, K. I., Transepithelial transport of dephenhydramine across monolayers of the human intestinal epithelial cell line Caco-2.Pharm. Res., 17, 539–545 (2000a).

    Article  PubMed  CAS  Google Scholar 

  • Mizuuchi, H., Katsura, T., Ashida, K., Hashimoto, Y., and Inui, K. I., Diphenhydramine transport by pH-dependent tertiary amine transport system in Caco-2 cells.Am. J. Physiol. Gastrointest. Liver Physiol., 278, G563-G569 (2000b).

    PubMed  CAS  Google Scholar 

  • Muller, J., Lips, K. S., Metzner, L., Neubert, R. H. H., Koepsell, H., and Bransch, M., Drug specificity and intestinal membrane localization of human organic cation transporters (OCT).Biochem. Pharmacol., 70, 1851–1860 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Neuhoff, S., Ungell, A. L., Zamora, I., and Artursson, P., pH-dependent bidirectional transport of weakly basic drugs across Caco-2 monolayers: Implications for drug-drug interactions.Pharm. Res., 20, 1141–1148 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Okuda, M., Saito, H., Urakami, Y., Takano, M., and Inui, K. I., cDNA colonig and functional expression of a novel rat kidney organic cation transporter, OCT2.Biochem. Biophys. Res. Commun., 224, 500–507 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Paton, D. M. and Webster, D. R., Clinical pharmacokinetics of H1-receptor antagonists (the antihistamines).Clin. Pharmacokinet., 10, 477–97 (1985).

    Article  PubMed  CAS  Google Scholar 

  • Pritchard JB, Walsh RC, Sweet DH. 1997. Characterization of organic cation transporter 2 (OCT2) isolated from rat kidney. FASEB J 11, A278 (Abstr.).

    Google Scholar 

  • de Roos, A. M., Rekker, R. F., and Nauta, W. T., The base strength of substituted 2-(diphenylmethoxy)-N,N-dimethylethylamines.Arzneim. Forsch., 20, 1763–1765 (1970).

    Google Scholar 

  • Russ, H., Gliese, M., Sonna, J., and Schomig, E., The extraneuronal transport mechanism for noradrenaline (uptake2) avidly transports 1-methyl-4-phenylpyridinium (MPP+).Naunyn-Schmiedeberg's Arch. Pharmacol., 346, 158–165 (1992).

    Article  CAS  Google Scholar 

  • Russ, H., Staudt, K., Martel, F., Gliese, M., and Schomig, E., The extraneuronal transporter for monoamine transmitters exists in cells derived from human central nervous system glia.Eur. J. Neurosci., 8, 1256–1264 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Said H. M., Ortiz, A., Kumar, C. K., Chatterjee, N., Dudeja, P. K., and Rubin, S., Transport of thiamine in human intestine: mechanism and regulation in intestinal epithelial cell model Caco-2.Am. J. Physiol., 277, C645-C651 (1999).

    PubMed  CAS  Google Scholar 

  • Sayer, L. M., Biochemical mechanism of action of the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP).Toxicol. Lett., 48, 121–149 (1989).

    Article  Google Scholar 

  • Schievelbein, H. and Barfour, D. J. K., (Ed.), Nicotine and the Tobacco Smoking Habit, Pergamon Press, Oxford, pp. 1–15. (1984).

    Google Scholar 

  • Schomig, E., Spitzenberger, F., Engelhardt, M., Martel, F., Ording, N., and Grundemann, D., Molecular cloning and characterization of two novel transport proteins from rat kidney.F.E.B.S. Letter 425, 79–86 (1998).

    Article  CAS  Google Scholar 

  • Sekine, T., Kusuhara, H., Utsunomiya-Tate, N., Tsuda, M., Sugiyama, Y., Kanai, N., and Endou, H., Molecular cloning and characterization of high-affinity carnitine transporter.Biochem. Biophys. Res. Commun., 251, 586–591 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Sekine, T., Cha, S. H., and Endou, H., The multispecific organic anion transporter (OAT) family.Pflugers Arch., 440, 337–350 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Slitt, A. L., Cherrington, N. J., Hartley, D. P., Leazer, T. M., and Klassen, C. D., Tissue distribution and renal developmental changes in rat organic cation transporter mRNA levels.Drug. Metab. Dispos., 30, 212–219 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Sokol, P. P., Holohan, P. D., and Ross, C. R., The neurotoxins 1-methyl-4-phenylpyridinium and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine are substrates for the organic cation transporter in renal brush border membrane vesicles.J. Pharmacol. Exp. Ther., 242, 152–157 (1987).

    PubMed  CAS  Google Scholar 

  • Song, I. S., Chung, S. J., and Shim, C. K., Contribution of ion pair complexation with bile salts to biliary excretion of organic cations in rats.Am. J. Physiol., 281, G515-G525 (2001).

    CAS  Google Scholar 

  • Streich, S., Bruss, M., and Bonisch, H., Expression of the extraneuronal monoamine transporter (uptake2) in human glioma cells.Naunyn-Schmiedeberg's Arch. Pharmacol., 353, 328–333 (1996).

    Article  CAS  Google Scholar 

  • Sugawara-Yokoo, M., Urakami, Y., Koyama, H., Fujikura, K., Masuda, S., Saito, H., Naruse, T., Inui, K. I., and Takata, K., Differential localization of organic cation transporters rOCT1 and OCT2 in the basolateral membrane of rat kidney proximal tubules.Histochem. Cell. Biol., 114, 175–180 (2000).

    PubMed  CAS  Google Scholar 

  • Tamai, I., Yabuuchi, H., Nezu, J., Sai, Y., Oku, A., Shimane, M., and Tsuji, A., Cloning and characterization of a novel human pH-dependent organic cation transporter, OCTN1.FEBS Lett., 419, 107–111 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Tamai, I., Ohashi, R., Nezu, J. I., Yabuuchi, H., Oku, A., Shimane, M., Sai, Y., and Tsuji, A., Molecular and functional identification of sodium ion-dependent high affinity human carnitine transporter OCTN2.J. Biol. Chem., 273, 20378–20382 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Tan, T., Kuramoto, M., Takahashi, T., Nakamura, H., Nakanishi, Y., Imasato, Y., and Yoshimura, H., Characteristics of the gastrointestinal absorption of morphine in rats.Chem. Pharm. Bull., 37, 168–173 (1989).

    PubMed  CAS  Google Scholar 

  • Tanphaichirt, V., Thiamine. In: Modern Nutrition in Health and Disease, edited by Shils ME, Olsen JA, Shike M. New York: Lea and Febiger, p. 359–375 (1994).

    Google Scholar 

  • Terashita, S., Dresser, M. J., Zhang, L., Gray, A. T., Yost, S. C., and Giacomini K. M., Molecular cloning and functional expression of a rabbit renal organic cation transporter.Biochim. Biophys. Acta., 1369, 1–6 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Tsuji, A. and Takami, I., Carrier-mediated intestinal transport of drugs.Pharm. Res., 13, 963–977 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Turnheim, K. and Lauterbach, F., Absorption and secretion of monoquaternary ammonium compounds by the isolated intestinal mucosa.Biochim. Pharmacol., 26, 99–108 (1977).

    Article  CAS  Google Scholar 

  • Turnheim, K. and Lauterbach, F., Interaction between intestinal absorption and secretion of monoquarternary ammonium compounds in guinea pigs — a concept for the absorption kinetics of organic cations.J. Pharmacol. Exp. Ther., 212, 418–424 (1980).

    PubMed  CAS  Google Scholar 

  • Urakami, Y., Okuda, M., Masuda, S., Saito, H., and Inui, K. I., Functional characteristics and membrane localization of rat multispecific organic cation transporters, OCT1 and OCT2, mediating tubular secretion of cationic drugs.J. Pharmacol. Exp. Ther., 287, 800–805 (1998).

    PubMed  CAS  Google Scholar 

  • Wade, P. R., Chen, J., Jaffe, B., Kassem, I. S., Blakely, R. D., and Gershon, M. D., Localization and function of a 5-HT transporter in crypt epithelia of the gastrointestinal tract.J. Neurosci., 16, 2352–2364 (1996).

    PubMed  CAS  Google Scholar 

  • Walsh, R. C., Sweet, D. H., Hall, L. A., and Pritchard, J. B., Expression cloning and characterization of a novel organic cation transporter from rat kidney.F.A.S.E.B. J 10, A127 (Abstr.) (1996).

    Google Scholar 

  • Wang, D. S., Jonker, J. W., Kato, Y., Kusuhara, H., Schinkel, A. H., and Sugiyama, Y., Involvement of organic cation transporter 1 in hepatic and intestinal disruption of metformin.J. Pharmacol. Exp. Ther., 302, 510–515 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Weber, W. and Kewitz, H., Determination of thiamine in human plasma and its pharmacokinetics.Eur. J. Clin. Pharmacol., 28, 213–219 (1985).

    Article  PubMed  CAS  Google Scholar 

  • Wu, X., Prasad, P. D., Leibach, F. H., and Ganapathy, V., cDNA sequence, transport function, and genomic organization of human OCTN2, a new member of the organic cation transporter family.Biochem. Biophys. Res. Commun., 246, 589–595 (1998b).

    Article  PubMed  CAS  Google Scholar 

  • Wu, X., Kekuda, R., Huang, W., Fei, Y. J., Leibach, F. H., Chen, J., Conway, S. J., and Ganapathy, V., Identity of the organic cation transporter OCT3 as the extraneuronal monoamine transporter (uptake2) and evidence for the expression of the transporter in the brain.J. Biol. Chem., 273, 32776–32786 (1998a).

    Article  PubMed  CAS  Google Scholar 

  • Wu, X., Huang, W., Prasad, P. D., Seth, P., Rajan, D. P., Leibach, F. H., Chen, J., Conway, S. J., and Ganapathy, V., Structure, function, and regional distribution of the organic cation transporter 2 (OCTN2), an organic cation/carnitine transporter.J. Pharmacol. Exp. Ther., 290, 1482–1492 (1999).

    PubMed  CAS  Google Scholar 

  • Wu, X., Huang, W., Ganapathy, M. E., Wang, H., Kekuda, R., Conway S. J., Leibach F. H., and Ganapathy, V., Structure, function, and regional distribution of the organic cation transporter OCT3 in the kidney.Am. J. Physiol., 279, F449-F458 (2000a).

    CAS  Google Scholar 

  • Wu, X., George, R. L., Huang, W., Wang, H., Conway, S. J., Leibach, F. H., and Ganapathy, V., Structural and functional characteristics and tissue distribution pattern of rat OCTN1, and organic cation transporter, cloned from placenta.Biochem. Biophys. Acta. 1466, 315–327 (2000b).

    Article  PubMed  CAS  Google Scholar 

  • Yabuuchi, H., Tamai, I., Nezu, J., Sakamoto, K., Oku, A., Shimane, M., Sai, Y., and Tsuji, A., Novel membrane transporter OCTN1 mediates multispecific, bidirectional, and pH-dependent transport of organic cations.J. Pharmacol. Exp. Ther., 289, 768–773 (1999).

    PubMed  CAS  Google Scholar 

  • Zeisel, S. H., Dietary choline: biochemistry, physiology, and pharmacology.Annu. Rev. Nutr., 1, 95–121 (1981).

    Article  PubMed  CAS  Google Scholar 

  • Zeisel S. H., Choline: needed for normal development of memory.J. Am. Coll. Nutr., 19 (suppl.), 528S-531S (2000).

    PubMed  CAS  Google Scholar 

  • Zhang, L., Dresser, M. J., Gray, A. T., Yost S. C., Terashita, S., and Giacomini, K. M., Cloning and functional expression of a human liver organic cation transporter.Mol. Pharmacol., 51, 913–921 (1997).

    PubMed  CAS  Google Scholar 

  • Zhang, L., Brett, C. M., and Giacomini, K. M., Role of organic cation transporters in drug absorption and elimination.Annu. Rev. Pharmacol. Toxicol., 38, 431–460 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Zwart, R., Verhaagh, S., Buitelaar, M., Popp-Snijder, C., and Barlow, D. P., Impaired activity of the extraneuronal monoamine transporter system known as uptake-2 inOrct3/Slc22a3-deficient mice.Mol. Cell Biol., 21, 4188–4196 (2001).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Koo Shim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, M.K., Shim, CK. The transport of organic cations in the small intestine: Current knowledge and emerging concepts. Arch Pharm Res 29, 605–616 (2006). https://doi.org/10.1007/BF02969273

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02969273

Key words

Navigation