African Archaeological Review

, 14:143 | Cite as

Macrophysical climatic modeling of Africa’s late quaternary climate: Site-specific, high-resolution applications for archaeology

  • R. A. Bryson
  • R. U. Bryson


Macrophysical climatic modeling (MCM) is based on the relationship between large-scale atmospheric dynamics and synoptic climatology to develop simulations of late Pleistocene and Holocene climate in specific localities. Climatic events are calculated at 200-year intervals for the last 14,000 and 500 years for the period from 14,000 to 40,000 B.P. The model has been applied to more than 200 localities in Africa. We present examples from different parts of the continent at locations of archaeological significance. The results indicate that the transition from glacial maximum to postglacial conditions shows both temporal and inter- and intraregional variability. In addition to long-term differences among early, middle, and late Holocene climatic regimes, the model also shows incidences of sharp, abrupt events at some intervals. The applications of MCM invite comparison with inferences based on proxy data and assist in formulating and cross-examining socioecodynamic models based on climatic change, e.g., the continuity of cultural interactions along the Mediterranean littoral, the emergence and spread of cattle pastoralism, and the depopulation of the Sahara during the glacial maximum.

Key Words

palaeoclimate macrophysical climate modeling Holocene Late Quaternary paleoenvironment 


La modélisation Climatique Macrophysique (MCM) se base sur la relation entre les dynamiques atmosphériques à grande échelle et la climatologie synoptique afin de réaliser des simulations du climat au Pléistocéne final et à l’Holocène pour des localités spécifiques. Les événements climatiques sont calculés à des intervalles de 200 ans pour les derniers 14.000 ans et de 500 ans pour la période allant de 14.000 à 40.000 B.P. Le modèle est appliqué à plus de 200 localités en Afrique. Nous présentons ici des exemples provenant de différentes parties du continent en des lieux significatifs du point de vue archéologique. Ces résultats indiquent que la transition entre le maximum glaciaire et les conditions postglaciaires présente une variabilité à la fois temporelle, inter et intra régionale. Outre les différences à long terme entre les régions climatiques du début, du milieu et de la fin de l’Holocène, le modèle montre aussi l’incidence d’événements aigus, brutaux, à certains intervalles. L’application de la MCM favorise la comparaison avec des inférences découlant des données plus approximatives et aide à formuler et à vérifier des modèles socio-écodynamiques basés sur le changement climatique, par exemple, la continuité des interactions culturelles le long du littoral méditerranéen, l’émergence et la propagation du pastoralisme et le dépeuplement du Sahara durant le maximum glaciaire.


  1. Bryson, R. A. (1988). Late quaternary volcanic modulation of Milankovitch climate forcing.Theoretical and Applied Climatology 39: 115–125.CrossRefGoogle Scholar
  2. Bryson, R. A. (1989). Modeling the NW India monsoon for the last 40000 years.Climate Dynamics 3: 169–177.CrossRefGoogle Scholar
  3. Bryson, R. A. (1992). A macrophysical model of the Holocene intertropical convergence and jetstream positions and rainfall for the Saharan region.Meteorology and Atmospheric Physics 47: 247–258.CrossRefGoogle Scholar
  4. Bryson, R. A. (1994). On integrating climatic change and culture change studies.Human Ecology 22: 115–128.CrossRefGoogle Scholar
  5. Bryson, R. A. (1997). The paradigm of climatology: An essay.Bulletin of American Meterological Society 78(3): 449–455.CrossRefGoogle Scholar
  6. Bryson, R. A., and Bryson, R. U. (1997). High resolution simulations of regional Holocene climate: North Africa and the Near East. InThird Millennium BC Climate Change and Old World Collapse, H.-N. Dalfes, G. Kukla, and H. Weiss (eds.), Springer-Verlag, Berlin, Heidelberg, pp. 565–593.Google Scholar
  7. Bryson, R. A., and Goodman, B. M. (1986). Milankovitch and global ice volume simulation.Theoretical and Applied Climatology 37: 22–28.CrossRefGoogle Scholar
  8. Bryson, R. A., and Kuhn, P M. (1961). Stress-differential induced divergence, with application to littoral precipitation.Erdkunde 15: 287–294.CrossRefGoogle Scholar
  9. Bryson, R. A., and Swain, A. M. (1981). Holocene variations of monsoon rainfall in Rajasthan.Quaternary Research 16(2): 135–145.CrossRefGoogle Scholar
  10. Flohn, H. (1965). Probleme der theoretischen Klimatologie.Naturwissenschaftliche Rundschau 10: 385–392.Google Scholar
  11. Hassan, F. (1986). Holocene lakes and prehistoric settlements of the Western Faiyum, Egypt.Journal of Archaeological Sciences 13: 483–501.CrossRefGoogle Scholar
  12. Hopkins, E. J. (1985).Analysis of Astronomically-Induced Monthly and Zonally Averaged Extra-Atmospheric Irradiance Variations of the Earth Over the Last 500,000 Years, Ph.D. dissertation, University of Wisconsin, Madison.Google Scholar
  13. Huschke, R. E. (ed.) (1959).Glossary of Meteorology, American Meteorological Society, Boston.Google Scholar
  14. Ilesanmi, O. O. (1971). An empirical formulation of an ITD rainfall model for the tropics: A case study of Nigeria.Journal of Applied Meteorology 10: 882–891.CrossRefGoogle Scholar
  15. Lamb, H. H. (1972).Climate: Past, Present, and Future, Vol. 1. Fundamentals and Climate Now, Methuen, London.Google Scholar
  16. Milankovitch, M. M. (1941). Kanon der Erdbestrahlung und seine Anwendung auf das Eiszeit-problem.Königlich Serbische Akad. Md. Special Publication 133, Belgrade, Yugoslavia, pp. 1–633. (English translation published by Israel Program for Scientific Translations, Jerusalem, for the U.S. Department of Commerce, Washington, DC, 1969.)Google Scholar
  17. Petit-Maire, N., Page, N., and Marchand, J. (1993).The Sahara in the Holocene (Map), Laboratoire de Geologie du Quaternaire, CNRS, Luminy Case 907, 13288 Marseille.Google Scholar
  18. Said, R. (1993).The River Nile, Geology, Hydrology, and Utilization, Pergamon Press, Oxford.Google Scholar
  19. Smagorinsky, J. (1966). General circulation experiments with the primitive equations, I: The basic experiment.Monthly Weather Review 91: 99–164.CrossRefGoogle Scholar
  20. Trewartha, G. T., and Horn, L. H. (1980).An Introduction to Climate, 5th ed., McGraw-Hill, New York.Google Scholar
  21. Waterbury, J. (1979).Hydropolitics of the Nile Valley, Syracuse University Press, Syracuse, NY.Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • R. A. Bryson
    • 1
  • R. U. Bryson
    • 2
  1. 1.Centre for Climatic ResearchUniversity of Wisconsin-MadisonMadison
  2. 2.Archaeoclimatology ConsultantsDavis

Personalised recommendations