Skip to main content

Differential expression of gangliosides in the ovary and uterus of streptozotocin-induced and db/db diabetic mice

Abstract

Gangliosides are widely distributed in mammalian cells and play important roles in various functions such as cell differentiation and growth control. In addition, diabetes and obesity cause abnormal development of reproductive processes in a variety of species. However, the mechanisms underlying these effects, and how they are related, are not fully understood. This study examined whether the differential expression of gangliosides is implicated in the abnormal follicular development and uterine architecture of streptozotocin (STZ)-induced and db/db diabetic mice. Based upon the mobility on high-performance thin-layer chromatography, mouse ovary consisted of at least five different ganglioside components, mainly gangliosides GM3, GM1, GD1a and GT1b, and diabetic ovary exhibited a significant reduction in ganglioside expression with apparent changes in the major gangliosides. A prominent immunofluorescence microscopy showed a dramatic loss of ganglioside GD1a expression in the primary, secondary and Graafian follicles of STZ-induced and db/db diabetic mice. A significant decrease in ganglioside GD3 expression was also observed in the ovary of db/db mice. In the uterus of STZ-induced diabetic mice, expression of gangliosides GD1a and GT1b was obviously reduced, but gangliosides GM1, GM2 and GD3 expression was increased. In contrast, the uterus of db/db mice showed a significant increase in gangliosides GM1, GD1a and GD3 expression. Taken together, a complex pattern of ganglioside expression was seen in the ovary and uterus of normoglycemic ICR and db/+ mice, and the correspoding tissues in diabetic mice are characterized by appreciable changes of the major ganglioside expression. These results suggest that alterations in ganglioside expression caused by diabetes mellitus may be implicated in abnormal ovarian development, and uterine structure.

This is a preview of subscription content, access via your institution.

References

  • Baker, L. R., Paddington, A., Goldman, Egler, J., and Moehring, J., Myo-inositol and prostaglandins reverse the glucose inhibition of neutral tube fusion in cultured mouse embryos.Diabetologia, 33, 593–596 (1990).

    PubMed  Article  CAS  Google Scholar 

  • Becerra, J. E., Khoury, M. J., Cordero, J. F., and Erickson, J. D., Diabetes mellitus during pregnancy and the risks for specific birth defects: a population-based case-control study.Pediatrics, 85, 1–9 (1990).

    PubMed  CAS  Google Scholar 

  • Brann, D. W., Wade, M. F., Dhandapani, K. M., Mahesh, V. B., and Buchanan, C. D., Leptin and reproduction.Steroids, 67, 95–104 (2002).

    PubMed  Article  CAS  Google Scholar 

  • Buchanan, T. A. and Freinkel, N., Fuel-mediated teratogenesis: symmetric growth retardation in the rat fetus at term after a circumscribed exposure to D-mannose during organogenesis.Am. J. Obstet. Gynecol., 158, 663–669 (1988).

    PubMed  CAS  Google Scholar 

  • Choo, Y. K., Distribution of ganglioside GM3 in the rat ovary after gonadotrophin stimulation.Mol. Cells, 9, 365–375 (1999).

    PubMed  CAS  Google Scholar 

  • Choo, Y. K., Chiba, K., Tai, T., Ogiso, M., and Hoshi, M., 1995. Differential distribution of gangliosides in adult rat ovary during the oestrous cycle.Glycobiology, 5, 299–309.

    PubMed  Article  CAS  Google Scholar 

  • Fraser, R., Diabetes in pregnancy.Arch. Dis. Child. Fetal Neonatal, 71, F224-F230 (1994).

    CAS  Google Scholar 

  • Graus, F., Cordon-Cardo, C., Houghton, A. N., Melamed, M. R., and Old, I. J., Distribution of the ganglioside GD3 in human nerve system detected by R24 mouse monoclonal antibody.Brain Res., 324, 190–194 (1984).

    PubMed  Article  CAS  Google Scholar 

  • Hakomori, S., Glycosphingolipids in cellular interaction, differentiation, and oncogenesis.Annu. Rev. Biochem., 50, 733–764 (1981).

    PubMed  Article  CAS  Google Scholar 

  • Hakomori, S., Bifunctional role of glycosphingolipids: modulators for transmembrane signaling and mediators for cellular interactions.J. Biol. Chem., 265, 8713–18716 (1990).

    Google Scholar 

  • Hattori, M. and Horiuchi, R., Biphasic effects of exogenous gnaglioside GM3 on follicle-stimulating hormone-dependent expression of luteinizing hormone receptor in cultured granulosa cells.Mol. Cell Endocrinol., 88, 47–54 (1992).

    PubMed  Article  CAS  Google Scholar 

  • Horton, Jr. W. E. and Sadler, T. W., Effects of maternal diabetes on early embryogenesis. Alterations in morphogenesis produced by the ketone body, B-hydroxybutyrate.Diabetes, 32, 610–616 (1983).

    PubMed  Article  CAS  Google Scholar 

  • Ju, E. J., Kwak, D. H., Lee, D. H., Kim, S. M., Kim, J. S., Kim, S. M., Choi, H. G., Jung, K. Y., Lee, S. U., Do, S. I., Park, Y. I., and Choo, Y. K., Pathophysiological implication of Ganglioside GM3 in early mouse embryonic development through apoptosis.Arch. Pharm. Res., 28, 1057–1064 (2005).

    PubMed  CAS  Article  Google Scholar 

  • Kanai, Y., Kawakami, H., Takata, K., Kurohmaru, M., Hayashi, Y., Nishida, T., and Hirano, H., Localization of Forssman glycolipid and GM1 ganglioside intracellularly and on the surface of germ cells during fetal testicular and ovarian development of mice.Histochemistry, 94, 561–568 (1990).

    PubMed  Article  CAS  Google Scholar 

  • Kotani, M., Kawashima, I., Ozawa, H., Terashima, T., and Tai, T., Differential distribution of major gangliosides in rat central nerve system detected by specific monoclonal antibodies.Glycobiology, 3, 137–146 (1993).

    PubMed  Article  CAS  Google Scholar 

  • Kubo, H. and Hoshi, M., Immunohistochemical study of the distribution of a ganglioside in sea urchin eggs.J. Biochem., 108, 193–199 (1990).

    PubMed  CAS  Google Scholar 

  • Kwak, D. H., Jung, K. Y., Lee, Y. C., and Choo, Y. K., Expressional changes of ganglioside GM3 during ovarian maturation and early embryonic development in db/db mice.Develop. Growth Differ., 45, 95–102 (2003).

    Article  CAS  Google Scholar 

  • Kwak, D. H., Rho, Y. I., Kwon, O. D., Ahn, S. H., Song, J. H., Choo, Y. K., Kim, S. J., Choi, B. K., and Jung, K. Y., Decreases of ganglioside GM3 in streptozotocin-induced diabetic glomeruli of rats.Life Sci., 72, 1997–2006 (2003).

    PubMed  Article  CAS  Google Scholar 

  • Ledeen, R. W. and Yu, R. K., Gangliosides: structure, isolation, and analysis.Meth. Enzymol., 83, 139–191 (1983).

    Article  Google Scholar 

  • Seyfried, T. N., Bernard, D. J., and Yu, R. K., 1984. Cellular distribution of gangliosides in the developing mouse cerebellum: analysis using the stagger mutant.J. Neurochem., 43, 1152–1162.

    PubMed  Article  CAS  Google Scholar 

  • Shogomori, H., Chiba, K., Kubo, H., and Hoshi, M., Non-plasmalemmal localization of the major ganglioside in sea urchin eggs.Zygote, 1, 215–223 (1993).

    PubMed  Article  CAS  Google Scholar 

  • Sun, G. W., Kobayashi, H., and Terao, T., Expression of link protein during mouse follicular development.J. Histochem. Cytochem., 47, 1433–4442 (1999).

    PubMed  CAS  Google Scholar 

  • Svennerholm, L., Gangliosides and synaptic transmission. In advances in experimental biology and medicine: structure and function of gangliosides.Adv. Exp. Med. Biol., 125, 533–544 (1980).

    PubMed  CAS  Google Scholar 

  • Takamatsu, K., Kamei, K., Kubushiro, K., Kiguchi, K., Nozawa, S., and Iwamori, M., Luteal phase-characteristic induction of 13SO3-GalCer in human cervical epithelia, and uterine endometria, and follicular phase-characteristics formation of gangliosides-derived negative charge gradient in different regions of fallopian tubes.Biochim. Biophys. Acta, 1170, 232–236 (1993).

    PubMed  CAS  Google Scholar 

  • Van Echten, G. and Sandhoff, K., Ganglioside metabolism: enzymology, topology, and regulation.J. Biol. Chem., 268, 5341–5344 (1993).

    PubMed  Google Scholar 

  • Zhang, Y., Proenca, R., Maffei, M., Barone, M., Leopold, L., and Friedman, J. M., Positional cloning of the mouse obese gene and its human homologue.Nature, 372, 425–432 (1994).

    PubMed  Article  CAS  Google Scholar 

  • Zhu, Z., Cheng, L., Tsui, Z., Hakomori, S., and Fenderson, B. A., Glycosphingolipids of rabbit endometrium and their changes during pregnancy.J. Reprod. Fertil., 95, 813–823 (1992).

    PubMed  CAS  Google Scholar 

  • Zhu, Z., Deng, H., Fenderson, B. A., Nudelman, E. D., and Tsui, Z., Glycosphingolipids of human myometrium and endometrium and their changes during the menstrual cycle, pregnancy and ageing.J. Reprod. Fertil., 88, 71–79 (1990).

    PubMed  CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Kug Choo.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kim, S.M., Kwak, D.H., Kim, S.M. et al. Differential expression of gangliosides in the ovary and uterus of streptozotocin-induced and db/db diabetic mice. Arch Pharm Res 29, 666–676 (2006). https://doi.org/10.1007/BF02968251

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02968251

Key words

  • Ganglioside
  • Development
  • Ovary
  • Uterus
  • Diabetic mice