Skip to main content

Advertisement

Log in

Oncogènes et carcinogenèse au niveau du tractus digestif

Oncogens and carcinogenesis in gastrointestinal tract

  • Published:
Acta Endoscopica

Résumé

Au cours des dernières années, de nouvelles informations ont été acquises à propos de l’étiopathogénie des tumeurs malignes, justifiant une mise au point des mécanismes impliqués

L’identification, dans le patrimoine génétique normal, de génes proto-oncogéniques, a montré une potentialité carcinogénétique intrinsèque à chaque cellule, la transformation néoplasique étant déclenchée par des stimuli de nature variée.

Les groupes les plus importants des stimuli génotoxiques sont:

  1. 1)

    les radiations ionisantes;

  2. 2)

    les oncovirus;

  3. 3)

    les carcinogènes chimiques.

Les premières causent une translocation de parties ou de l’ensemble des chromosomes. Les oncovirus agissent à un niveau plus differencié en introduisant dans la cellule, leurs propres génomes porteurs de facteurs oncogènes. Enfin, au niveau moléculaire, les carcinogènes chimiques introduisent dans le D.N.A. nucléaire, des molécules électrophiles ayant une affinité pour des groupes nucléophiles. Ceci provoque une occupation spatiale susceptible de modifier l’information génétique.

Ainsi s’opère une stimulation de un ou plusieurs gènes proto-oncogéniques qui subissent la première modification nécessaire mais non suffisante pour déclencher la transformation néoplasique.

Deux des plus importants groupes de stimuli génotoxiques ont été envisagés. Les carcinogènes chimiques sont relativement habituels dans la majorité des aliments utilisés, soit comme contaminants soit comme constituants propres de substances à activité protectrice. Un exemple consiste en la transformation des nitrosamines en nitrosamides, tant dans le milieu naturel que dans l’organisme humain. D’autres carcinogènes comprennent des additifs alimentaires, des processus de cuisson, et une contamination par les moisissures et les micro-organismes, ainsi que l’apparition d’hydrocarbures polycycliques après fumigation ou grillade.

Les oncovirus modifient la cellule hôte par introduction d’un gène proto-oncogénique responsable de la transformation cellulaire. Les cellules normales contiennent de nombreux gènes proto-oncogèniques semblables à ceux des virus. On présume qu’elles deviennent une partie du génome viral, via un mécanisme de réorganisation intracellulaire.

L’effet carcinogène est particulièrement lié à de petites altérations dans la synthese de différentes protéines impliquées dans le contrôle du mécanisme de reproduction cellulaire. Ces modifications associées sont susceptibles d’affecter la prolifération cellulaire. Néanmoins, le developpement tumoral est inhibé par plusieurs mécanismes de défense efficace. Un des plus importants implique les anticorps et les processus d’immunité cellulaire qui préviennent la croissance tumorale par intervention à differents niveaux.

Le processus carcinogénique s’enclenche uniquement en cas de déficit immunitaire ou des autres mécanismes de défense, avec pour conséquence le développement tumoral.

Summary

In recent years, new information has been acquired on the etiopathogenesis of malignant tumors, so that an outline of the state of the art can now be attempted.

The identification of proto-oncogenic genes in the normal genetic endowment has shown carcinogenicity to be potentially intrinsic in each cell, neoplastic transformation being triggered by stimuli of various nature.

The most important groups of genotoxic stimuli are:

  1. 1)

    ionizing radiations;

  2. 2)

    oncoviruses;

  3. 3)

    chemical carcinogens.

The first causes gross translocations of portions of, or of whole, chromosome arms. Oncoviruses act at a finer level, by introducing their genome, which carries an oncogene, into the cell genome. Finally, at molecular level, chemical carcinogens introduce into D.N.A. nucleotides electrophilic molecules having an affinity for nucleophilic groups. These cause spacial occupancies capable of modifying genetic information.

The common result is the stimulation of one or more proto-oncogenic genes which undergo a first modification, which is required but not sufficient for neoplastic transformation to occur.

Two of the most important groups of genotoxic stimuli are evaluated. Chemical carcinogens are quite common in the most widely used foods, being present as contaminants, preservatives or components. An example is the easy formation of nitrosamines and nitrosamides both in nature and in man. Other carcinogens include food additives, curing procedures, contamination by molds and microorganisms, and the appearance of polycyclic hydrocarbons following smoking, toasting or broiling procedures.

Oncoviruses modify the host cell by introducing a proto-oncogenic gene responsible for cell transformation. Normal cells contain many other proto-oncogenic genes similar to the viral ones. They are assumed to have become part of the viral genome through possible primordial rearrangement mechanisms.

The carcinogenetic effect is presumably linked also to small alterations in the synthesis of various proteins involved in the control of cell reproduction, all these modifications together affecting proliferation. However, tumor development is counteracted by several, effective defense mechanisms. Among these, an important role is played by antibody- and cell-mediate immune processes which prevent free tumor growth through complex mechanisms acting at different levels.

Only when all the immune or other defense mechanisms have been overcome, does the long carcinogenetic process come to an end and tumor develops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Références

  1. BISHOP J. M. — Cancer genes come of age.Cell, 1983,32, 1018–1020.

    Article  PubMed  CAS  Google Scholar 

  2. BISHOP J. M. — Cellular oncogenes and retroviruses.Ann. Rev. Biochem., 1983,52, 301–354.

    Article  PubMed  CAS  Google Scholar 

  3. BISHOP J. M. — The molecular biology of RNA tumor viruses: a physician’s guide.N. Engl. J. Med., 1980,303, 675.

    PubMed  CAS  Google Scholar 

  4. BISHOP J. M. — Cellular oncogenes and retroviruses.Ann. Rev. Biochem., 1983,52, 301–354.

    Article  PubMed  CAS  Google Scholar 

  5. BODMER W. F. — Cancer genetics.Cancer Surveys, 1982, 1/1, 2–15.

    Google Scholar 

  6. BURNET F. M. — The concept of immunological surveillance.Progr. Exp. Tumor Res., 1970,13, 1–27.

    PubMed  CAS  Google Scholar 

  7. CORREA P., CUELLO C, MONTES G. — Pathogenesis of gastric carcinoma: the role of the microenvironment.In Herfarth Ch., Schlag P., Eds.: Gastric cancer. Springer-Verlag, Berlin, 1979, pp. 15–18.

    Google Scholar 

  8. CORREA P. — The gastric precancerous process.Cancer Surveys, 1983,2/3, 437–449.

    Google Scholar 

  9. DUESBERG P. H. — Retroviral transforming genes in normal genes.Nature, 1983,304, 219–226.

    Article  PubMed  CAS  Google Scholar 

  10. FUJIMOTO S., GREENE M. I., SEHON A. H. — Regulation of the immune response to tumor antigens. I. Immunosuppressor cells in tumorbearing hosts.J. Immunol., 1976,116, 791–799.

    PubMed  CAS  Google Scholar 

  11. GALLO R. C., WONG-STAAL F. — Retroviruses as etiologic agents of some animal and human leukemias and lymphomas and as tools for elucidating the molecular mechanism of leukemogenesis.Blood, 1982,60, 545–555.

    PubMed  CAS  Google Scholar 

  12. GALLO R. C., WONG-STAAL F. — Human T-cell leukemia-lymphoma virus (HTLV) and human viral oncogene homologues.In O≿connor T. E., Rauscher F. J. Jr., Eds.: Oncogenes and Retroviruses: Evaluation of Basic Findings and Clinical Potential. A. R. Liss, Publ. Inc., New York, 1983, 223–242.

    Google Scholar 

  13. GEORGE C. F., WATT P. J. — The liver and response to drugs, page 350 in Wright R., Alberti K. G. M. M., Karran S., Millward-Sadler G. H., Eds.: Liver and biliary disease. W. B. Saunders, Co. Ltd, 1979, London.

    Google Scholar 

  14. HALHWELL B., GUTTERIDGE J. M. C. — Free radicals.Lancet, 1984,II, 1095.

    Article  Google Scholar 

  15. HUANG D. P., HO J. H. C., WEBB K. S., WOOD B. J., GOUGH T. A. — Volatile nitrosamines in salt-preserved fish before and after cooking.Food Cosmet. Toxicol., 1981,19, 167–171.

    Article  PubMed  CAS  Google Scholar 

  16. JOOSSENS J. V., KESTELOOT H., AMERY A. — Salt intake and mortality from stroke.N. Engl. J. Med., 1979,300, 1396.

    PubMed  CAS  Google Scholar 

  17. KAPLAN H. K. — The biology of neoplasia.In Smith L. H., Thier S. O., Eds.: Pathophysiology. The biological principles of disease. W.B. Saunders Co., Philadelphia, 1981, pp. 267–325.

    Google Scholar 

  18. LAND H., PARADA L. F., WEINBERG R. A. — Cellular oncogenes and multistep carcinogenesis.Science, 1983,222, 771–778.

    Article  PubMed  CAS  Google Scholar 

  19. MILLER E. C., MILLER J. A. — Mechanism of chemical carcinogenesis.Cancer, 1981,47, 1055.

    Article  PubMed  CAS  Google Scholar 

  20. PFEIFER C. J. — Exogenous factors in the epidemiology of gastric carcinoma.In Herfarth C.H., Schlag P., Eds.: Gastric Cancer. Springer-Verlag, Berlin, 1979, 1–8.

    Google Scholar 

  21. QUIMBY G. F., EASTWOOD G. L. — Effect of N-methyl-N’nitro-N-nitrosoguanidine on gastroduodenal epithelial proliferation in Wistar/Lewis rats.J. Natl. Cancer Inst., 1981,66, 331–337.

    PubMed  CAS  Google Scholar 

  22. REITS M. S., POIESZ B. J., RUSCETTI F. W., GALLO R. C. — Characterization and distribution of nucleic acid sequences of a novel type C Retrovirus isolated from neoplastic human T lymphocytes. Proc. Natl. Acad. Sci., USA, 1981,78, 1887.

    Article  Google Scholar 

  23. ROBERTS J. J. — Carcinogen-induced DNA damage and its repair.Br. Med. Bull., 1981,36, 25–27.

    Google Scholar 

  24. SHARMA B. K., SANTANA J. A., WOOD E. C., WALT R. P., PEREIRA M., NOONE P., SMITH P. R. L., WALTERS C. L., POUNDER R. E. — Sviluppo batterico e produzione di nitrosamine a livello gastrico, prima, durante e dopo un trattamento con meoprazolo.Br. Med. J., Ed. Italiana, 1985,2, 146–149.

    Google Scholar 

  25. SCHMAHL D. — Carcinogenic substances and carcinogenesis. Their clinical significance.In Herfarth C. H., Schlag P., Eds.: Gastric cancer. Springer-Verlag, Berlin, 1979, 15–18.

    Google Scholar 

  26. SHELBY M. D., MATSUSHIMA T. — Mutagens and carcinogens in the diet and digestive tract.Mutation Res., 1981,85, 177.

    Google Scholar 

  27. SHIBAMOTO T., NISHIMURA O., MIHARA S. — Mutagenicity of products obtained from a Maltol-ammonia Browning model system.J. Agric. Food Chem., 1981,29, 641–646.

    Google Scholar 

  28. SPINGARN N. E., GARVIE C. T. — Formation of mutagens in sugar-ammonia model system.J. Agric. Food Chem., 1919,27, 1319–1321.

    Article  Google Scholar 

  29. STEHELIN D., VARMUS H. E., BISHOP J. M., VOGT P. K. — DNA related to the transforming gene of avian sarcoma viruses is present in normal avian DNA.Nature, 1976,260, 170–173.

    Article  PubMed  CAS  Google Scholar 

  30. SUGIMURA T., KAWACHI T., NAGAO M., YAHAGI T. — Mutagens in food as causes of cancer.In Newell G. R., Ellison N. M., Eds.: Nutrition and Cancer. Etiology and Treatment. Raven Press, New York, 1981, 59–71.

    Google Scholar 

  31. SUGIMURA T. — Mutagens, carcinogens, and tumor promoters in our daily food.Cancer, 1982,49, 1970–1984.

    Article  PubMed  CAS  Google Scholar 

  32. TANNENBAUM S. R., MORAN D., RAND W., CUELLO C, CORREA P. — Gastric cancer in Columbia. IV.: Nitrate and other ions in gastric contents of residents from a high-risk region.J. Natl. Cancer Inst., 1979,62, 9–12.

    PubMed  CAS  Google Scholar 

  33. TATEMATSU M., TAKAHASHI M., FUKUSHIMA S., HANAOUCHI M., SHIRAI T. — Effects in rats of sodium chloride on experimental gastric cancers induced by N-Methyl-N’-nitro-N-Nitrosoguanidine or 4-nitroquinoline-l-oxide.J. Natl. Cancer Inst., 1975,55, 101–104.

    PubMed  CAS  Google Scholar 

  34. THOMPSON M. — Aetiological factors in gastrointestinal carcinogenesis.Scand. J. Gastroenterol., 1984,19, suppl. 104, 77–89.

    Google Scholar 

  35. TUYNS A. J., PEQUIGNOT G., GIGNOUX M., VALLA A. — Cancers of the digestive tract, alcohol and tobacco.Int. J. Cancer, 1982,30, 9–11.

    Article  PubMed  CAS  Google Scholar 

  36. VARMUS H. E. — Recent evidence for oncogenesis by insertion mutagenesis and gene activation.Cancer Surveys, 1982,1, 309–319.

    Google Scholar 

  37. WEISBURGER J. H., HORN C. — Nutrition and cancer: mechanisms of genotoxic and epigenetic carcinogens in nutritional carcinogenesis.Bull. NY Acad. Med., 1982,58, 296–312.

    CAS  Google Scholar 

  38. WEISBURGER J. H., MARQUARDT H., MOWER H. F., HIROTA N., MORI H., WILLIAMS G. — Inhibition of carcinogenesis: Vitamin C and the prevention of gastric cancer.Prev. Med., 1980,9, 352–361.

    Article  PubMed  CAS  Google Scholar 

  39. WEISBURGER J. H., WINDER E. L., HORN CLARA L. — Nutritional factors and etiologic mechanisms in the causation of gastrointestinal cancers.Cancer, 1982,50, 2541–2549.

    PubMed  CAS  Google Scholar 

  40. WEISBURGER J. H., HORN CLARA L. — Human and laboratory studies on the cause and prevention of gastrointestinal cancer.Scand. J. Gastroenter. 1984,19, suppl. 104, 15–26.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Tirés à part: Dr Rinaldo TURPINI, Gastroenterology Section, First Medical Clinic, University of Pavia, Piazzale Golgi, 27100 Pavia (Italy).

Les auteurs remercient le Studio Ricciuti pour les dessins et Lusofarmaco S.p.A. pour leur soutien matériel.

The authors thanks Studio Ricciuti for art work and Lusofarmaco S.p.A. for supporting it.

About this article

Cite this article

Turpini, R., Scotti, A. & Turpini, F. Oncogènes et carcinogenèse au niveau du tractus digestif. Acta Endosc 16, 107–123 (1986). https://doi.org/10.1007/BF02966236

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02966236

Mots-clés

Key-words

Navigation