Skip to main content
Log in

Molecular detection of ochratoxin A producers: an updated review

  • Published:
Mycotoxin Research Aims and scope Submit manuscript

Abstract

Ochratoxin A (OTA) can be detected worldwide from various food and feed sources. It is produced byPenicillium nordicum andP. verrucosum as well as by variousAspergillus species, withA. ochraceus andA. carbonarius as the predominant producers. Various pairs of PCR primers based on AFLP, RAPD as well as primers specific to ribosomal RNA and genes coding for calmodulin and OTA biosynthetic pathway components were recently developed to detect and identify OTA producers in conventional and real-time PCR assays. Application of such assays in contaminated samples was demonstrated only in few cases. The current review gives an updated overview over the methods at hand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Castella G, Larsen TO, Cabañes FJ, Schmidt H, Alboresi A, Niessen I, Färber P, Geisen R (2002) Molecular characterization of ochratoxin A producing strains of the genusPenicillium. Syst Appl Microbiol 25: 74–83

    Article  PubMed  CAS  Google Scholar 

  2. Van der Merwe KJ, Steyn PS, Fourie LF, Scott DB, Theron JJ (1965) Ochratoxin A, a toxic metabolite produced byAspergillus ochraceus wilh. Nature 205: 1112–1113

    Article  PubMed  Google Scholar 

  3. Kuiper-Goodman T, Scott PM (1989) Risk assessment of the mycotoxin ochratoxin A. Biomed environ Sci 2: 179–284

    PubMed  CAS  Google Scholar 

  4. Delacruz L, Bach PH (1990) The role of ochratoxin A metabolism and biochemistry in animal and human nephropathy. Journal of Biopharmaceutical Science 1: 277–304

    CAS  Google Scholar 

  5. Huff, JE (1991) Carcinogenicity of ochratoxin A in experimental animals. In: Castegnaro M, Plestina R, Dirheimer G, Chermozemsky N, Bartsch H. (eds) Mycotoxins, Endemic Nephropathy and Urinary Tract Tumors, IARC, Lyon, 229–244

    Google Scholar 

  6. Chelkowski J (1991) Preface and introduction. In: Chelkowski J (ed) Ceral Grain Mycotoxins, Fungi and Quality in Drying and Storage. Elsevier, Amsterdam, pp. I-XX.

    Google Scholar 

  7. Northold MD (1979) The effect of water activity and temperature on the production of some mycotoxins. PhD thesis, University of Wageningen

  8. Sweeney M, Dobson ADW (1999) Molecular biology of mycotoxin biosynthesis. FEMS Microbiol Lett 175: 149–163

    Article  PubMed  CAS  Google Scholar 

  9. Larsen TO, Svendsen A, Smedsgaard J (2001) Biochemical characterization of ochratoxin A-producing strains of the genusPenicillium. Appl Environ Microb 67: 3630–3635

    Article  CAS  Google Scholar 

  10. Niessen I, Schmidt H, Mühlencoert E, Färber P, Karolewiez A, Geisen R (2005) Advances in the molecular diagnosis of ochratoxin A-producing fungi. Food Addit Contam 22: 324–334

    Article  PubMed  CAS  Google Scholar 

  11. Taniwaki MH, Pitt JI, Teixeira AA, Imanaka BT (2003) The source of ochratoxin A in Brazilian coffee and its formation in relation to processing methods. Int J Food Microbiol 82: 173–179

    Article  PubMed  CAS  Google Scholar 

  12. Martins ML, Martins HM, Gimeno A (2003) Incidence of microflora and of ochratoxin A in green coffee beans (Coffea arabica). Food Addit Contam 20: 1127–1131

    Article  PubMed  CAS  Google Scholar 

  13. Pardo E, Marin S, Ramos AJ, Sanchis V (2004) Occurrence of ochratoxigenic fungi and ochratoxin A in green coffce from different origins. Food Sci Technol Int 10: 45–50

    Article  CAS  Google Scholar 

  14. Battilani P, Pietri A, Bertuzzi T, Languisco L, Giomi P, Kozakiewiez Z (2003) Occurrence of ochratoxin A-producing fungi in grapes grown in Italy. J Food Protect 66: 633–636

    Google Scholar 

  15. Serra R, Abrunhosa L, Kozakieviez Z, Venancio A (2003) BlackAspergillus species as ochratoxin A producers in Portuguese wine grapes. Int J Food Microbiol 88: 63–68

    Article  PubMed  CAS  Google Scholar 

  16. Abarea ML, Accensi F, Bragulat MR, Castellá G, Cabañes FJ (2003)Aspergillus carbonarius as the main source of ochratoxin A contamination in dried vine fruits from the Spanish market. J Food Protect 66: 504–506

    Google Scholar 

  17. Tjamos SE, Antoniou PP, Kazantzidou A, Antonopoulos DF, Papageorgiou I, Tjamos EC (2004)Aspergillus niger andAspergillus carbonarius in Corinth raisin and wine-producing vineyards in Greece: Population composition, Ochratoxin A production and chemical control. J Phytopathol (Berlin) 152: 250–255

    Article  CAS  Google Scholar 

  18. Schmidt H, Ehrmann M, Vogel RF, Taniwaki MH, Niessen L (2003) Molecular typing ofAspergillus ochraceus and construction of species specific SCAR-primers based on AFLP. Syst Appl Microbiol 26: 434–438

    Article  Google Scholar 

  19. Schmidt H, Taniwaki MH, Vogel RF, Niessen L (2004) Utilization of AFLP markers for PCR-based identification ofAspergillus carbonarius and indication of its presence in green coffee samples. J Appl Microbiol 97: 899–909

    Article  PubMed  CAS  Google Scholar 

  20. Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23: 4407–4414

    Article  PubMed  CAS  Google Scholar 

  21. Schmidt H, Bannier M, Vogel RF, Niessen L (2004) Detection and quantification ofAspergillus ochraceus in green coffee by PCR. Lett Appl Microbiol 38: 464–469

    Article  PubMed  CAS  Google Scholar 

  22. Mühlencoert E, Mayer I, Zapf MW, Vogel RF, Niessen L (2004) Production of ochratoxin A byAspergillus ochraceus. Eur J Plant Pathol 110: 651–659

    Article  Google Scholar 

  23. Adye J, Mateles RI (1964) Incorporation of labelled compounds in aflatoxins. Biochim Biophys Acta 86: 418–420

    PubMed  CAS  Google Scholar 

  24. Pelegrinelli-Fungaro MH, Vissoto PC, Sartori D, Vioas-Boas LA, Furlaneto MC, Taniwaki MH (2004) A molecular method for detection ofAspergillus carbonarius in coffee beans. Curr Microbiol 49: 123–127

    Article  Google Scholar 

  25. Iwen PC, Hinrichs SH, Rupp ME (2002) Utilization of the internal transcribed spacer regions as molecular targets to detect and identify human fungal pathogens. Med Mycol 40: 87–109

    Article  PubMed  CAS  Google Scholar 

  26. González-Salgado A, Patino B, Vázquez C, González-Jaén MT (2005) Discrimination ofAspergillus niger and otherAspergillus species belonging to sectionNigri by PCR assays. FEMS Microbiol Lett 245:353–361

    Article  PubMed  Google Scholar 

  27. White TJ, Burns T, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogeneties. In: Inis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR Protocols: a Guide to Methods and Applications. Academic Press, New York, 315–322

    Google Scholar 

  28. Patino B, González-Salgado A, González-Jaén MT, Vázquez C (2005) PCR detection assays for the ochratoxin-producingAspergillus carbonarius andAspergillus ochraceus species. Int J Food Microbiol 104: 207–214

    Article  PubMed  CAS  Google Scholar 

  29. Perrone G, Susca A, Stea G, Mulè G (2004) PCR assay for identification ofAspergillus carbonarius andAspergillus japonicus. Eur J Plant Pathol 110: 641–649

    Article  CAS  Google Scholar 

  30. Karolewiez A, Geisen R (2005) Cloning a part of the ochratoxin A biosynthetic gene cluster ofPenicillium noridicum and characterization of the ochratoxin polyketide synthase gene. Syst Appl Microbiol 28: 588–595

    Article  PubMed  CAS  Google Scholar 

  31. Geisen R, Mayer Z, Karolewiez A, Färber P (2004) Development of a real-time PCR system for detection ofPenicillium nordicum and for monitoring ochratoxin A production in foods by targeting the ochratoxin polyketide synthase gene. Syst Appl Microbiol 27: 501–507

    Article  PubMed  CAS  Google Scholar 

  32. Geisen R (2004) Molecular monitoring of environmental conditions influencing the induction of ochratoxin A biosynthesis genes inPenicillium nordicum. Mol Nutr Food Res 48: 532–540

    Article  PubMed  CAS  Google Scholar 

  33. Bogs C, Battilani P, Geisen R (2005) Development of a molecular detection and differentiation system for ochratoxin A producingPenicillium species and its application to analyse the occurrence ofP. nordicum in fermented meats. Int J Food Microbiol (in press, doi:10.1016/j.jifoodmicro.2005.08.010)

  34. Dao HP, Mathieu F, Lebrihi A (2005) Two primer pairs to detect OTA producers by PCR method. Int J Food Microbiol 104: 61–67

    Article  PubMed  CAS  Google Scholar 

  35. King AD, Hocking AD, Pitt JI (1979) Dichloran-rose bengal medium for enumeration of molds from foods. Appl Environ Microb 37: 959–964

    Google Scholar 

  36. Hocking AD, Pitt JI (1980) Dichloran-glycerol medium for enumeration of xerophilic fungi from low moisture foods. Appl Environ Microb 39: 488–492.

    CAS  Google Scholar 

  37. Shapira R, Paster N, Eyal O, Menasherov M, Mett A, Salomon R (1996) Detection of aflatoxinogenic molds in grains by PCR. Appl Environ Microb 62: 3270–3273

    CAS  Google Scholar 

  38. Geisen R (1996) A multiplex PCR reaction for the detection of aflatoxin and sterigmatocystin producing fungi. Systematic and Applied Microbiology 19: 388–392

    CAS  Google Scholar 

  39. Niessen L, Vogel RF (1998) Group specific PCR-detection of potential trichothecene-producingFusarium species in pure cultures and cereal samples. Syst Appl Microbiol 21: 618–631

    PubMed  CAS  Google Scholar 

  40. Edwards SG, Pirgozliev SR, Hare MC, Jenkinson P (2001) Quantification of tricho-thecene-producingFusarium species in harvested grain by competitive PCR to determine efficacies of fungicides againstFusarium head blight of winter wheat. Appl Environ Microb 67: 1575–1580

    Article  CAS  Google Scholar 

  41. Lee T, Oh DW, Kim HS, Lee J, Kim YH, Yun SH, Lee YW (2001) Identification of deoxynivalenol- and nivalenol-producing chemotypes ofGibberella zeae by using PCR. Appl Environ Microb 67: 2966–2972

    Article  CAS  Google Scholar 

  42. Bluhm BH, Flaherty JE, Cousin MA, Woloshuk CP. (2002) Multiplex polymerase chain reaction assay for the differential detection of trichothecene- and fumonisin-producing species ofFusarium in cornmeal. J Food Protect 65: 1955–1961

    CAS  Google Scholar 

  43. González-Jaén MT, Mirete S, Patino B, López-Errasquín E, Vázquez C (2004) Genetic markers for the analysis of variability and for production of specific diagnostic sequences in fumonisin-producing strains ofFusarium verticillioides. Eur J Plant Pathol 110: 525–532

    Article  Google Scholar 

  44. Boichenko LV, Boichenko DM, Vinokurova NG, Reshetilova TA, Arinbasarov MU (2001) Use of polymerase chain reaction for searching for producers of ergot alkaloids from among microscopic fungi. Mikrobiologiia 70: 360–364

    PubMed  CAS  Google Scholar 

  45. Paterson RRM, Archer S, Kozakiewiez Z, Lea A, Locke T, O'Grady E (2000) A gene probe for the patulin metabolic pathway with potential for use in patulin and novel disease control. Biocontrol Sci Techn 10: 509–512

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Niessen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niessen, L. Molecular detection of ochratoxin A producers: an updated review. Mycotox Res 22, 48–53 (2006). https://doi.org/10.1007/BF02954557

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02954557

Keywords

Navigation