This is a preview of subscription content, access via your institution.
References
S. Agmon,Elliptic Boundary Value Problems, Van Nostrand, 1965.
F. J. Almgren, Jr., Existence and regularity almost everywhere to solutions of elliptic variational problems among surfaces of varying topological type and singularity structure,Ann. of Math. 87 (1968), 321–391.
M. F. Atiyah, Elliptic operators, discrete groups and Von Neumann algebras,Astérisque, vol. 32–33, Société Math. de France, 1976, 43–72.
M. F. Atiyah, R. Bott andA. Shapiro, Clifford modules,Topology 3 (Suppl. 1) (1964), 3–38.
M. F. Atiyah andF. Hirzebruch, Vector bundles and homogeneous spaces,Proc. Symp. Pure Math. A.M.S. III (1961), 7–38.
M. F. Atiyah andI. Singer, The index of elliptic operators I,Ann. of Math. 87 (1968), 484–530.
M. F. Atiyah andI. Singer, The index of elliptic operators III,Ann. of Math. 87 (1968), 546–604.
M. F. Atiyah andI. Singer, The index of elliptic operators V,Ann. of Math. 93 (1971), 139–149.
M. F. Atiyah andI. Singer, Index Theory for skew-adjoint Fredholm operators,Publ. Math. I.H.E.S. 37, (1969), 1–26.
L. Bérard Bergery, La courbure scalaire des variétés riemanniennes, Sém. Bourbaki, exposé no 556, juin 1980,Springer Lecture Notes 842 (1981), 225–245.
L. Bérard Bergery,Scalar curvature and isometry group (to appear).
Yu. D. Burago andV. A. Toponagov, On 3-dimensional riemannian spaces with curvature bounded above,Math. Zametki 13 (1973), 881–887.
Yu. D.Burago andV. A. Zagallar,Geometric Inequalities (in Russian), Leningrad, 1980.
I. Chavel andE. Feldman,Isoperimetric inequalities on curved surfaces (to appear).
J. Cheeger andD. Gromoll, The splitting theorem for manifolds of non-negative Ricci curvature,J. Diff. Geom. 6 (1917), 119–128.
S. Y. Cheng andS. T. Yau, Differential equations on riemannian manifolds and their geometric applications,Comm. Pure and Appl. Math. 28 (1975), 333–354.
H. Federer,Geometric Measure Theory, N.Y., Springer Verlag, 1969.
H. Federer, Real flat chains, cochains and variational problems,Indiana Univ. Math. J. 24 (1974), 351–407.
H. Federer andW. Fleming, Normal and integral currents,Ann. of Math. 72 (1960), 458–520.
F. Fiala, Le problème des isopérimètres sur les surfaces ouvertes à courbure positive,Comm. Math. Helv. 13 (1941), 293–346.
D. Fischer-Colbrie andR. Schoen, The structure of complete stable minimal surfaces in 3-manifolds of non-negative scalar curvature,Comm. Pure and Appl. Math. 33 (1980), 199–211.
W. Fleming, On the oriented Plateau problem,Rend. Circ. Mat. Palermo (2)11 (1962), 69–90.
Z. Gao,Thesis, Stony Brook, 1982.
M. Gromov, Filling riemannian manifolds,J. Diff. Geom. 18 (1983), 1–147.
M. Gromov andH. B. Lawson, Jr., Spin and scalar curvature in the presence of a fundamental group,Ann. of Math. 111 (1980), 209–230.
M. Gromov andH. B. Lawson, Jr., The classification of simply-connected manifolds of positive scalar curvature,Ann. of Math. 111 (1980), 423–434.
R. Hardt andL. Simon, Boundary regularity and embedded solutions for the oriented Plateau problem,Ann. of Math. 110 (1979), 439–486.
P. Hartman, Geodesic parallel coordinates in the large,Amer. J. Math. 86 (1964), 705–727.
N. Hitchin, Harmonic spinors,Adv. in Math. 14 (1974), 1–55.
V. K. Ionin, Isoperimetric and certain other inequalities for a manifold of bounded curvature,Sibirski Math. J. 10 (1969), 329–342.
J. Kazdan, Deforming to positive scalar curvature on complete manifolds,Math. Ann. 261 (1982), 227–234.
J. Kazdan andF. Warner, Prescribing curvatures,Proc. of Symp. in Pure Math. 27 (1975), 309–319.
S. Kobayashi andK. Nomizu,Foundations of Differential Geometry, N.Y., Interscience, 1963.
H. B. Lawson Jr., Minimal Varieties,Proc. of Symp. in Pure Math. 27 (1975), 143–175.
H. B. Lawson Jr., The unknottedness of minimal embeddings,Inv. Math. 11 (1970), 183–187.
H. B. Lawson Jr. andM. L. Michelsohn,Spin Geometry (to appear).
H. B. Lawson Jr. andS. T. Yau, Scalar curvature, non-abelian group actions and the degree of symmetry of exotic spheres,Comm. Math. Helv. 49 (1974), 232–244.
A. Lichnerowicz, Spineurs harmoniques,C.r. Acad. Sci. Paris, Sér. A-B,257 (1963), 7–9.
G. Lusztig, Novikov’s higher signature and families of elliptic operators,J. Diff. Geom. 7 (1971), 229–256.
W. Meeks III,L. Simon andS. T. Yau, Embedded minimal surfaces, exotic spheres and manifolds with positive Ricci curvature,Ann. of Math. 116 (1982), 621–659.
J. Milnor, On manifolds homemorphic to the 7-sphere,Ann. of Math. (2)64 (1956), 399–405.
J. Milnor, Remarks concerning spin manifolds, “Differential Geometry and Combinatorial Topology”, Princeton University Press, 1965, 55–62.
J. Milnor,Topology from the Differentiable Viewpoint, Univ. of Virginia Press, Charlottesville, 1965.
J. Milnor, A Unique factorization theorem for 3-manifolds,Amer. J. Math. 84 (1962), 1–7.
T. Miyazaki,On the existence of positive scalar curvature metrics on non-simply-connected manifolds (to appear).
C. B. Morrey,Multiple Integrals and the Calculus of Variations, New York, Springer-Verlag, 1966.
R. Osserman, Bonneson-style isoperimetric inequalities,Amer. Math. Monthly 86 (1979), 1–29.
T. Sakai,On a theorem of Burago-Toponogov (to appear).
H. H. Schaefer,Topological Vector Spaces, N.Y., Springer-Verlag, 1971.
R. Schoen,A remark on minimal hypercones (to appear).
R. Schoen andS. T. Yau, Existence of incompressible minimal surfaces and the topology of three dimensional manifolds of non-negative scalar curvature,Ann. of Math. 110 (1979), 127–142.
R. Schoen andS. T. Yau, On the structure of manifolds with positive scalar curvature,Manuscripta Math. 28 (1979), 159–183.
R. Schoen andS. T. Yau, Complete three dimensional manifolds with positive Ricci curvature and scalar curvature,in Seminar on differential geometry,Annals of Math. Studies, no 102, Princeton Univ. Press, 1982, 209–227.
R. Schoen andS. T. Yau, Harmonic maps and the topology of stable hypersurfaces and manifolds with non-negative Ricci curvature,Comm. Math. Helv. 39 (1976), 333–341.
R. Schoen andS. T. Yau (to appear).
J. Simons, Minimal varieties in riemannian manifolds,Ann. of Math. 88 (1968), 62–105.
R. Thom, Quelques propriétés globales des variétés différentiables,Comm. Math. Helv. 28 (1954), 17–86.
Author information
Authors and Affiliations
Additional information
Research partially supported by NSF Grant number MCS 830 1365.
About this article
Cite this article
Gromov, M., Lawson, H.B. Positive scalar curvature and the Dirac operator on complete riemannian manifolds. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 58, 83–196 (1983). https://doi.org/10.1007/BF02953774
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF02953774
Keywords
- Scalar Curvature
- Dirac Operator
- Compact Manifold
- Complete Riemannian Manifold
- Minimal Hypersurface