Skip to main content
Log in

A unified dynamic model and control synthesis for robotic manipulators with geometric end-effector constraints

  • Published:
KSME Journal Aims and scope Submit manuscript

Abstract

A compact dynamic model and a hybrid position/force controller for a constrained robot manipulator, subject to a set of holonomic (integrable) constraints have been developed in this study. The joint-space dynamics (DAEs) has been transformed into the constraint-space model in which the system dynamics can be readily decomposed into two orthogonal subsystems; the motion-controlled subsystem is specified in the direction tangential to the known constraint surfaces, and the force-controlled subsystem is regulated in the orthogonal direction. Also utilizing the transformed dynamics, we have presented a hybrid adaptive control law to simultaneously manipulate the end-effector position and the contact force. Further, by a Lyapunov theory, it has been shown that the corresponding closed-loop system is globally stable under the parametric uncertainties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

+ :

A set of non-negative real number; ℜ+ : = [0, + ∞)

n :

Then-dimensional vector space with real elements ℜ

x ×m :

A set of all real-valued(n×m) matrices

sup :

The supremum, the least upper bound

x‖:

The Euclidean norm of a vectorx; ‖x‖ = [x T x]1/2, ∀x∈ℜn

A >0(<0):

A positive(negative) definite matrixA

λ max (A):

The maximum eigenvalue of matrixA:\(A ; \lambda _{max} \left( A \right) = \mathop {\max }\limits_i \left\{ {\lambda _i \left( A \right)} \right\}\), whereλ i (A) is thei the eigenvalue of matrixA

λ min (A):

The minimum eigenvalue of matrixA;\(A ; \lambda _{min} \left( A \right) = \mathop {\min }\limits_i \left\{ {\lambda _i \left( A \right)} \right\}\)

A‖:

The induced norm of a real matrixA ∈ ℜn ×m ; ‖A‖ = [λ max (A T A)]1/2

C p :

A set ofp-times continuously differentiable functions

E nxn :

An (nxn) identity matrix

0 n :

An-dimensional null vector

0 nn :

A (nxn) null matrices

L p :

The function norm in the Lebesgue space; Letf(t) : ℜ+ → ℜn be Lebesgue measurable function, then theL p -norm ‖f p is defined as ‖f p = [∫0 f(t)‖p dt]1/p < 0 forp∈[1, ∞). Whenp=∞,fL if and only if\(\left\| f \right\|_\infty = \mathop {sup}\limits_{t \in [0, + \infty )} \left\| {f\left( t \right)} \right\|< \infty \)

(O)c :

A complement of (O)

rs(A) :

The range space of matrixA(or column space ofA)

rk(A) :

The rank of matrixA

References

  • Carelli, R., Kelly, R. and Ortega, R., 1990, “Adaptive Force Control of Robot Manipulators,”Int. J. Contr., Vol. 52, pp. 37–54.

    Article  MATH  MathSciNet  Google Scholar 

  • Fossen, T. and Sagatun, S., 1991, “Adaptive Control of Nonlinear Systems: A Case Study of Underwater Robotic Systems,”J. Robotic Systems, Vol. 8, pp. 393–412.

    Article  MATH  Google Scholar 

  • Han, Y., Lui, L., Lingarkar, R., Sinha, N. K., and Elbestawi, M. A., 1990, “Adaptive Control of Constrained Robotic Manipulators,”Int. J. Robotic Automat., Vol. 7, pp. 50–56.

    Google Scholar 

  • Hogan, N., 1985, “Impedance Control: an Approach to Manipulation(Part 1–3),”J. Dyn. Syst. Meas. Contr., Vol. 107, pp. 1–24.

    MATH  Google Scholar 

  • Kazerooni, H., Houpt, P. K. and Sheridan, T. B., 1986, “Robust Compliant Motion for Manipulators.”IEEE J. Robot. Automat., Vol. 2, pp. 83–105.

    Google Scholar 

  • Khatib, O., 1987, “A Unified Approach for Motion and Force Control of Robot Manipulators: The Operational Space Formulation.”IEEE J. Robotics and Automat., Vol. 3, pp. 43–53.

    Google Scholar 

  • Mason, M. T., 1981, “Compliance and Force Control for Computer Controlled Manipulators.”IEEE. Trans. SMC. Vol. 11, pp. 418–432.

    Google Scholar 

  • McClamroch, N. H. and Wang, D., 1988, “Feedback Stabilization and Tracking of Constrained Robots,”IEEE Trans. Automat. Contr., Vol. 33, pp. 419–426.

    Article  MATH  MathSciNet  Google Scholar 

  • Ortega, R. and Spong, M. W. 1989, “Adaptive Motion Control of Rigid Robots: a Tutorial,”Automatica, Vol. 25, pp. 877–888.

    Article  MATH  MathSciNet  Google Scholar 

  • Raibert, M. H. and Craig, J. J. 1981, “Hybrid Position/Force Control of Manipulators,”J. Dyn. Syst. Meas. Contr., Vol. 102, pp. 126–133.

    Article  Google Scholar 

  • Reed, J. S. and Ioannou, P., 1989, “Instability Analysis and Robust and Adaptive Control of Robotic Manipulators.”IEEE J. Robotics and Automat., Vol. 5, pp. 381–386.

    Article  Google Scholar 

  • Sadegh, N. and Horowitz, R., 1990, “Stability and Robustness Analysis of a Class of Adaptive Controllers for Robotic Manipulators,”Int. J. Robotics Res., Vol. 9, pp. 74–92.

    Google Scholar 

  • Sastry, S. S. and Bodson, M. 1989. “Adaptive Control: Stability, Convergence and Robustness.” Prentice-Hall, Englewood Cliffs, NJ.

    MATH  Google Scholar 

  • Wen, J. T. and Murphy, S., 1991, “Stability Analysis of Position and Force Control for Robot Arm,”IEEE Trans. Automat. Contr. Vol. 36, pp. 365–371.

    Article  MATH  MathSciNet  Google Scholar 

  • Yoshikawa, T., 1987, “Dynamic Hybrid Position/Force Control of Robot Manipulators-Description of Hand Constraints and Calculation of Joint Driving Force.”IEEE J. Robotics Automat., Vol. 3, pp. 386–392.

    Google Scholar 

  • You, S. S., 1994, “Dynamics and Controls for Robot Manipulators with Open and Closed Kinematic Chain Mechanisms,” Ph.D. Thesis, Dept. Mech. Engr., Iowa State Univ., Ames, Iowa, U. S. A.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

You, S.S. A unified dynamic model and control synthesis for robotic manipulators with geometric end-effector constraints. KSME Journal 10, 203–212 (1996). https://doi.org/10.1007/BF02953659

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02953659

Key Words

Navigation