Skip to main content
Log in

Mercury and selenium distribution in human kidney cortex

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Concentration of mercury and selenium were analyzed in tissue fractions of human kidney cortex samples from seven autopsy cases. Total mercury content ranged between 0.3–9.0 nmol Hg/g wet wt. Between 27–61% of the total mercury was found in the 105,000g supernatant of the tissue homogenate from six cases. In kidney cortex from the seventh case, a deceased dentist with the highest concentration of mercury, only 3% of the total mercury was found in the 105,000g supernatant and about 88% in a SDS-insoluble fraction. In this fraction the molar ratio between mercury and selenium was close to 1∶1. This study supports results from previous animal studies and indicates that mercury in human kidney cortex could be deposited in forms with different solubility. It could be of importance to speciate different forms of mercury in tissues according to solubility and association to selenium when interpretations of mercury concentrations are made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Berlin, inHandbook on the Toxicology of Metals, Vol. II, L. Friberg, G. F. Nordberg, and V. Vouk, eds., Elsevier, Amsterdam, pp. 387–445 (1986).

    Google Scholar 

  2. WHO,IPCS, Environmental Health Criteria: 118 Inorganic mercury, World Health Organization, Geneva (1991).

    Google Scholar 

  3. J. Parizek and I. Ostadalova,Experientia,23, 142–143 (1967).

    Article  PubMed  CAS  Google Scholar 

  4. M. Nordberg, B. Trojanowska, and G. F. Nordberg,Environ. Physiol. Biochem. 4, 149–158 (1974).

    PubMed  CAS  Google Scholar 

  5. E. Komsta-Szumska and J. Chmielnicka,Arch. Toxicol. 38, 217–228 (1977).

    Article  PubMed  CAS  Google Scholar 

  6. R. W. Chen, P. D. Whanger, and S. C. Fang,Pharmacol. Res. Commun. 6, 571–579 (1974).

    Article  PubMed  CAS  Google Scholar 

  7. A. Naganuma and N. Imura,Pharmac. Biochem. Behav. 15, 449–454 (1981).

    Article  CAS  Google Scholar 

  8. D. H. Groth, L. Settler, and G. Mackay, inEffects and Dose-Response Relationships of Toxic Metals, G. F. Nordberg, ed., Elsevier, Amsterdam, pp. 527–543 (1976).

    Google Scholar 

  9. J. H. Koeman, W. H. M. Peeters, C. H. M. Koudstaal-Hol, P. S. Tijoe, and J. J. M. de Goeij,Nature 245, 385–386 (1973).

    Article  PubMed  CAS  Google Scholar 

  10. C. Leonzio, S. Focardi, and C. Fossi,Sci. Total Environ.,119, 77–84 (1992).

    Article  PubMed  CAS  Google Scholar 

  11. L. Kosta, A. R. Byrne, and V. Zelenko,Nature,254, 238, 239 (1975).

    Article  PubMed  CAS  Google Scholar 

  12. M. Nylander and J. Weiner,Br. J. Ind. Med. 48, 729–734 (1991).

    PubMed  CAS  Google Scholar 

  13. L. Magos,Analyst 96, 847–853 (1971).

    Article  PubMed  CAS  Google Scholar 

  14. B. Lind, L. Friberg, and M. Nylander,J. Trace Elements Exp. Med. 1, 49–56 (1988).

    CAS  Google Scholar 

  15. B. Lind, R. Body, and L. Friberg,Fresenius' J. Anal. Chem. 345, 314–317 (1993).

    Article  CAS  Google Scholar 

  16. M. Nylander, L. Friberg, and B. Lind,Swed. Dent. J. 11, 179–187 (1987).

    PubMed  CAS  Google Scholar 

  17. I. Drabaek, V. Carlsen, and L. Just,J. Radioanal. Nucl. Chem. Lett. 103, 249–260 (1986).

    Article  CAS  Google Scholar 

  18. L. Hansson, J. Pettersson, and Å. Olin,Talanta 34, 829–833 (1987).

    Article  CAS  PubMed  Google Scholar 

  19. M. Nylander, L. Friberg, D. Eggleston, and L. Björkman,Swed. Dent. J. 13, 235–243 (1989).

    PubMed  CAS  Google Scholar 

  20. R. J. Hargreaves, J. G. Evans, I. Janota, L. Magos, and J. B. Cavanagh,Neuropathol. Appl. Neurobiol. 14, 443–452 (1988).

    Article  PubMed  CAS  Google Scholar 

  21. I. Falnoga, I. Kregar, M. Skreblin, M. Tusek-Znidaric, and P. Stegnar,Biol. Trace Element Res.,37, 71–83 (1993).

    Article  CAS  Google Scholar 

  22. G. F. Nordberg, M. Nordberg, M. Piscator, and O. Vesterberg,Biochem. J. 125, 491–498 (1972).

    Google Scholar 

  23. R. F. Burk, K. A. Foster, P. M. Greenfield, and K. W. Kiker,Proc. Soc. Exp. Biol. Med. 145, 782–785 (1974).

    PubMed  CAS  Google Scholar 

  24. T. A. Gasiewicz and J. C. Smith,Chem.-Biol. Interactions,23, 171–183 (1978).

    Article  CAS  Google Scholar 

  25. O. Wada, N. Yamaguchi, T. Ono, M. Nagahashi, and T. Morimura,Environ. Res. 12, 75–80 (1976).

    Article  CAS  Google Scholar 

  26. J. R. Prohaska and H. E. Ganther,Chem.-Biol. Interactions 16, 155–167 (1977).

    Article  CAS  Google Scholar 

  27. L. Björkman, S. Langworth, B. Lind, C.-G. Elinder, and M. Nordberg,J. Trace Elem. Electrolytes Health Dis.,7, 157–164 (1993).

    PubMed  Google Scholar 

  28. L. Björkman, M. Svartengren, and M. Nordberg,Hum. Exp. Toxicol. 11, 341–346 (1992).

    Article  PubMed  Google Scholar 

  29. J. T. Salonen, R. Salonen, R. Lappeteläinen, P. H. Mäenpää, G. Alfthan, and P. Puska,Br. Med. J. 290, 417–420 (1985).

    CAS  Google Scholar 

  30. J. C. Hansen,Med. Hypotheses,25, 45–53 (1988).

    Article  PubMed  CAS  Google Scholar 

  31. Å. Bruce,Annals Clin. Res. 18, 8–12 (1986).

    CAS  Google Scholar 

  32. WHO,IPCS, Environmental Health Criteria: 101. Methylmercury, World Health Organization, Geneva (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Björkman, L., Palm, B., Nylander, M. et al. Mercury and selenium distribution in human kidney cortex. Biol Trace Elem Res 40, 255–265 (1994). https://doi.org/10.1007/BF02950798

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02950798

Index Entries

Navigation