Skip to main content
Log in

Metabolism of cheese whey lactose by kluyveromyces fragilis for energy and growth under batch condition

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The fermentation of lactose byKluyveromyces fragilis is an exothermic reaction in which heat is released, resulting in a rise in reactor temperature. A heat balance was performed on a 5-L batch reactor used for single cell protein (SCP) production to determine the portions of cheese whey lactose used for energy and growth. On the average, about 88% of lactose was used for growth, and 12% was used for energy. The lactose consumed during the lag and stationary phases was used mostly for cell endogenous growth and respiration, whereas that consumed during the exponential growth phase was used for cell multiplication and energy. The heat released varied from 6.5 to 8.9 kJ/g cell. Because of the proper design of the fermenter, the temperature of the medium did not rise above 33°C; thus, no cooling system was needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jelen, P. and LeMarguer, M. (1974), Feasibility evaluation of industrial processing of cheese whey. ASAE paper No. 74-6503, St. Joseph, Michigan, IL.

    Google Scholar 

  2. Singh, R. K. and Ghaly, A. E. (1984), Single-cell protein production from cheese whey. ASAE Paper No. 84-6528, St. Joseph, Michigan, IL.

    Google Scholar 

  3. Webb, B. H., Johnson, A. H., and Alford, J. A. (1974),Fundamentals of Dairy Chemistry, 2nd ed., AVI, Westport, CT.

    Google Scholar 

  4. Webb, B. H. and Whitter, E. O. (1970),By-Products From Milk, AVI, Westport, CT.

    Google Scholar 

  5. Singh, R. K. and Ghaly, A. E. (1985), Feasibility of cheese whey processing for production of food and feed supplement. CSAE Paper No. 85-504. Ottawa, Ont.

    Google Scholar 

  6. Litchfield, H. J. (1979), Production of single-cell protein for use in food or feed,Microbial Technology, Academic, New York.

    Google Scholar 

  7. Nester, E. W., Roberts, C. E., Pearsall, N. N., and McCarthy, B. J. (1978),Microbiology, 2nd Ed., Holt Rinehart and Winston, New York.

    Google Scholar 

  8. Luria, S.E. (1960), The bacteria protoplasm: composition and organisation,The Bacteria, Gunsalus, I. C. and Stainer, R. Y., eds., Academic, New York.

    Google Scholar 

  9. Reisman, A. B., Gore, J. H., and Day, J. T. (1968), The design of a pilot plant for batch and continuous Fermentation.Chem. Eng. Progress Symp. Series 64(86), 26–36.

    CAS  Google Scholar 

  10. Weast, R. C. (1988),Handbook of Chemistry and Physics, 69th Ed., Chemical Rubber Company, Cleveland, OH.

    Google Scholar 

  11. Perry, R. H. and Green, D. (1984),Perry’s Chemical Engineer's Handbook, 6th Ed., Macgraw-Hill, New York.

    Google Scholar 

  12. Ben-Hassan, R. M., Ghaly, A. E., and Mansour, M. H. (1991), A computer based pH measurement and control system for fermentation processes.App. Biochem. Biotechnol. J. 30, 233–245.

    Article  CAS  Google Scholar 

  13. APHA (1985),Standard Methods for the Examination of Water and Wastewater. American Public Health Association, Washington, DC.

    Google Scholar 

  14. Messer, J. W., Behney, H. M., and Leudecke, L. O. (1985), Microbiological count methods,Standard Methods for the Examination of Dairy Products, 15th Ed., Richardson, G. H., ed., American Public Health Association, Washington, DC.

    Google Scholar 

  15. Ghaly, A.E., Ben-Hassan, R. M., and Mansour, M. H. (1991), Effect of pH control on the growth and survival ofKluyveromyces fragilis in cheese whey under aerobic condition.App. Biochem. Biotechnol. J. (in press).

  16. Bernstein, S., Tzeng, C. H., and Sisson, D. (1977), The commercial fermentation of cheese whey for the production of protein and/or alcohol.Biotechnol. Bioeng. Symp. 7, 1–9.

    CAS  Google Scholar 

  17. Bernstein, S. and Everson, T. C. (1973), Protein production from acid whey via fermentation. Proceedings of the National Symposium on Food Process Waste, 4th Environmental Protection Agency Technology Series, No. EPA66012-73-031, College Park, MD.

  18. Wasserman, A. E. (1960), The rapid conversion of whey to yeast.Dairy Eng. 77, 374–379.

    CAS  Google Scholar 

  19. Alvarez, J. and Ricano, J. (1979), Modeling and optimal control of a SCP fermentation process.Biotechnol. Bioeng. Symp. 9, 149–154.

    Google Scholar 

  20. Vananuvat, P. and Kinsella, J. E. (1975), Production of yeast protein from crude lactose bySaccharomyces fragilis: batch culture and continuous culture studies.J. Food Sci. 40(2), 336–341, 823-825.

    Article  CAS  Google Scholar 

  21. Mahmoud, M. M. and Kosikowski, F. V. (1982), Alcohol and single cell protein production byKluyveromyces in concentrated whey permeates with reduced ash.J. Dairy Sci. 65, 2082–2087.

    Article  CAS  Google Scholar 

  22. Burgess, K. J. (1977), Production of yeast protein from lactose permeate in a tower fermenter.J. Food Sci. Technol. 1, 107–115.

    CAS  Google Scholar 

  23. Porges, N. (1953), Yeast: a valuable product from wastes.J. Chem. Education 30(11), 562–565.

    Article  Google Scholar 

  24. Longmuir, I. S. (1954), Respiration rate of bacteria as a function of oxygen concentration.Biochemistry 57(1), 81–87.

    CAS  Google Scholar 

  25. Winzler, K. J. (1941), The respiration of baker yeast at low oxygen tension.J. Cellular and Comparative Physiol. 17(3), 264–271.

    Google Scholar 

  26. Ghaly, A. E., Kok, R., and Ingrahm, J. M. (1989), Growth rate determination of heterogeneous microbial population in swine manure.App. Biochem. Biotechnol. 22, 59–77.

    Article  CAS  Google Scholar 

  27. Maxon, W. D. and Johnson, M. J. (1953), Aeration studies on propagation of baker’s yeast.Ind. Eng. Chem. 45, 2554–2560.

    Article  CAS  Google Scholar 

  28. Hixon, A. W. and Gaden, E. L. Jr. (1950), Oxygen transfer in submerged fermentation.Ind. Eng. Chem. 42, 1792–1801.

    Article  Google Scholar 

  29. Strohm, J., Dale, R. F., and Peppier, H. J. (1959), Polarographic measurement of dissolved oxygen in yeast fermentation.App. Microbiol. 7(4), 235–238.

    CAS  Google Scholar 

  30. Litchfield, H. J. (1983), Single-cell proteins.Science 219(2), 740–746.

    Article  CAS  Google Scholar 

  31. Delaney, R. A. M., Kennedy, R., and Waley, B. D. (1975), Composition ofSaccharomyces fragilis biomass grown on lactose permeate.J. Sci. Food Agriculture 26(12), 1177–1186.

    Article  CAS  Google Scholar 

  32. Ghaly, A. E. and Singh, R. K. (1989), Pollution potential reduction of cheese whey through yeast fermentation.App. Biochem. Biotechnol. 22(3), 181–203.

    Article  CAS  Google Scholar 

  33. ASHRAE (1989),Fundamentals. American Society of Heating, Refrigeration and Air Conditioning Engineers, Atlanta, GA.

    Google Scholar 

  34. Holman, J. P. (1990),Heat Transfer, 7th Ed., McGraw-Hill, New York.

    Google Scholar 

  35. Stockar, U. V. and Birou, B. (1989), The heat generated by yeast cultures with a mixed metabolism in the transition between respiration and fermentation.Biotechnol. Bioeng. 34, 86–101.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ben-Hassan, R.M., Ghaly, A.E. & Ben-Abdallah, N. Metabolism of cheese whey lactose by kluyveromyces fragilis for energy and growth under batch condition. Appl Biochem Biotechnol 33, 97–116 (1992). https://doi.org/10.1007/BF02950780

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02950780

Index Entries

Navigation