Applied Biochemistry and Biotechnology

, Volume 36, Issue 1, pp 63–74 | Cite as

Fructose production

Coimmobilized amyloglucosidase, pullulanase, and glucose isomerase on BIOBONETM
  • Doris Y. Schafhagser
  • Kenneth B. Storey
Article

Abstract

Amyloglucosidase, pullulanase, and glucose isomerase were coimmobilized onto granular chicken bone (BIOBONETM). Enzyme ratios showing optimum glucose and fructose production (0.7:10:22.3 U amyloglucosidase: pullulanase: glucose isomerase) resulted in 14.4±1.9% of activity bound relative to an equal amount of free enzyme. The estimated specific activity for these enzymes decreased 4.6-fold with immobilization. ReactionpH strongly influenced the yield and ratio of glucose and fructose produced. Net hexose production from the immobilized system was optimal atpH 6.5 and 55°C with a fructose yield of about 20%.

Index Entries

Amyloglucosidase chicken bone pullulanase enzyme coimmobilization glucose isomerase high fructose syrup 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Coker, L. E. and Venkatasubramanian, K. (1985),Comprehensive Biotechnology, vol. 3, chapter 36, Moo-Young, M., ed., Permagon Press, Oxford.Google Scholar
  2. 2.
    Verhoff, G., Boguslawski, G., Lanterno, O. J., Schlager, S. T., and Jao, Y. C. (1985),Comprehensive Biotechnology, vol. 3, chapter 42, Moo-Young, M., ed., Permagon Press, Oxford, pp. 837–859.Google Scholar
  3. 3.
    Pitcher, W. H. (1980),Immobilized enzymes for food processing, Pitcher, W. H., ed., CRC Press, Cleveland, pp. 2–6.Google Scholar
  4. 4.
    Schafhauser, D. Y. and Storey, K. B. (1992a),Appl. Microbiol. Biotechnol, in press.Google Scholar
  5. 5.
    Schafhauser, D. Y. and Storey, K. B. (1992b),Appl. Biochem. Biotechnol., in press.Google Scholar
  6. 6.
    Schafhauser, D. Y. and Storey, K. B. (1992), Coimmobilization of amyloglucosidase and pullulanse onto granular chicken bone for enhanced starch degradation.Biotech. Appl. Biochem., submitted for publication.Google Scholar
  7. 7.
    Lowry, O. H. and Passonneau, J. V. (1972),A Flexible System of Enzymatic Analysis, Academic Press, NY, pp. 174–177.Google Scholar
  8. 8.
    Antrim, R. L. and Auterinen, A.-L. (1985),Oral paper at the 36th Detmond Starch Convention, Finnsugar Biochemics Inc., Schaumberg, IL.Google Scholar
  9. 9.
    Jensen, V. and Rugh, S. (1985),Methods Enzymol. 136, 356.CrossRefGoogle Scholar
  10. 10.
    Ahern, T. J. and Klibanov, A. M. (1987),Methods Biochem. Anal. 33, 91.CrossRefGoogle Scholar
  11. 11.
    Chakarbarti, A. C. and Storey, K. B. (1990),Appl. Biochem. Biotech. 23, 139.CrossRefGoogle Scholar
  12. 12.
    Fogarty, W. M. (1983),Microbial Enzymes and Biotechnology, chapter 2, Fogarty, W. M., ed., Applied Science Co., NY, pp. 59–72.Google Scholar

Copyright information

© Humana Press Inc. 1992

Authors and Affiliations

  • Doris Y. Schafhagser
    • 1
  • Kenneth B. Storey
    • 1
  1. 1.Institute of Biochemistry, Departments of Biology and ChemistryCarleton UniversityOttawaOntario Canada

Personalised recommendations