Skip to main content

Production and characterization of keratinase fromParacoccus sp. WJ-98


A bacterial strain WJ-98 found to produce active extracellular keratinase was isolated from the soil of a poultry factory. It was identified asParacoccus sp. based on its 16S rRNA sequence analysis, morphological and physiological characteristics. The optimal culture conditions for the production of keratinase byParacoccus sp. WJ-98 were investigated. The optimal medium composition for keratinase production was determined to be 1.0% keratin, 0.05% urea and NaCl, 0.03% K2HPO4, 0.04% KH2PO4, and 0.01% MgCl2·6H2O. Optimal initial pH and temperature for the production of keratinase were 7.5 and 37°C, respectively. The maximum keratinase production of 90 U/mL was reached after 84 h of cultivation under the optimal culturing conditions. The keratinase fromParacoccus sp. WJ-98 was partially purified from a culture broth by using ammonium sulfate precipitation, ion-exchange chromatography on DEAE-cellulose, followed by gel filtration chromatography on Sephadex G-75. Optimum pH and temperature for the enzyme reaction were pH 6.8 and 50°C, respectively and the enzymes were stable in the pH range from 6.0 to 8.0 and below 50°C. The enzyme activity was significantly inhibited by EDTA, Zn2+ and Hg2+. Inquiry into the characteristics of keratinase production from these bacteria may yield useful agricultural feed processing applications.

This is a preview of subscription content, access via your institution.


  1. Williams, C. M., C. S. Richter, M. Kenzie Jr., and J. C. H. Shih (1990) Isolation, identification, and characterization of a feather-degrading bacterium.Appl. Environ. Microbiol. 56: 1509–1515.

    CAS  Google Scholar 

  2. Nickerson W. J., J. J. Noval, and R. S. Robinson (1963) Keratinase: I. Properties of the enzyme conjugate elaborated byStreptomyces fradiae.Biochim. Biophys. Acta 77: 73–86.

    Article  CAS  Google Scholar 

  3. Moran, E. T., J. D. Summers, and S. J. Slinger (1966) Keratin as a source of protein for the growing chick: 1. Amino acid imbalance as the cause for inferior performance of feather meal and the implication of disulfide bonding in raw feathers as the reason for poor digestibility.Poult. Sci. 45: 1257–1266.

    CAS  Google Scholar 

  4. Sen Gupta S, R. S. Nigram, and R. N. Tandan (1950) A new wool degrading fungus-Ctenomyces species.Text. Res. J. 20: 671–675.

    Article  Google Scholar 

  5. Park, I. W. (1986)Enzyme Nomenclature into Korean. pp. 362. Chongro Pub. Co., Seoul, Korea.

    Google Scholar 

  6. Molyneaux, G. S. (1959) The digestion of wool by a keratinolyticBacillus.Aust. J. Biol. Sci. 12: 274–278.

    Google Scholar 

  7. Williams, C. M. and J. C. H. Shih (1989) Enumeration of some microbial groups in thermophilic poultry waste digesters and enrichment of a feather-degrading culture.J. Appl. Bacteriol. 67: 25–35.

    Google Scholar 

  8. Lin, X., C. G. Lee, E. S. Casale, and J. C. H. Shih (1992) Purification and characterization of a keratinase from a feather-degradingBacillus licheniformis strain.Appl. Environ. Microbiol. 58: 3721–3725.

    Google Scholar 

  9. Nam, G. W., D. W. Lee, H. S. Lee, N. J. Lee, B. C. Kim, E. A. Choe, J. K. Hwang, M. T. Suhartono, and Y. R. Pyun (2002) Native-feather degradation byFervidobacterium islandicum AW-1, a newly isolated keratinase-producing thermophilic anaerobe.Arch. Microbiol. 178: 538–547.

    Article  CAS  Google Scholar 

  10. Kim, S. Y., G. W. Nam, D. W. Lee, B. C. Kim, H. J. Choi, S. B. Kim, and Y. R. Pyun (2000) Studies on thermostable keratinase. fromHydrogenophilus thermoluteolus KJ-30.Proceeding of Spring Meeting of Kor. Soc. Appl. Microbial. April 28–29. Seoul, Korea.

  11. Tomarelli, R. M., J. Charney, and M. L. Herding (1949) The use of azoalbumin as a substrate in the colormetric determination of peptic and tryptic activity.J. Lab. Clim. Med. 34: 428–433.

    CAS  Google Scholar 

  12. Yim, J. S., J. W. Jung, J. S. Lee, D. K. Kang, and H. K. Kim (2003) Optimization of β-mannase production fromBacillus subtilis JS-1.Kor. J. Microbiol. Biotechnol. 31: 57–62.

    CAS  Google Scholar 

  13. Chon, D. H. and T. J. Kwon (2000) Isolation of keratinolytic protease producing microorganism and its cultivation condition.Kor. J. Appl. Microbiol. Biotechnol. 29: 134–141.

    Google Scholar 

  14. Tideto, T., S. Nakamura, R. Aono, and K. Horikoshin (1992) Degradation of human hair by a thermostable alkaline protease from alkalophilicBacillus sp. No. AH 101Biosci. Biotech. Biochem. 56: 1667–1669.

    Article  Google Scholar 

  15. Yu, R. J., S. R. Harmon, and F. Blank (1968) Isolation and purification of an extracellular keratinase ofTrichophyton mentagrophytes.J. Bacteriol. 96: 1435–1436.

    CAS  Google Scholar 

  16. Page, W. J. and J. J. Stock (1974) Phosphate-mediated alteration of the Microsporum gypseum germination protease specificity for substrate: Enhanced keratinase activity.J. Bacteriol. 117: 422–431.

    CAS  Google Scholar 

  17. Hamel, H., J. Kalisch, M. Keil, W. C. Marsch, and M. Buslan (1991) Quantification of keratinolytic activity fromDermatophilus congolensis.Med. Microbiol. Immunol. 180: 45–51.

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Jong-Soo Lee.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lee, YJ., Kim, JH., Kim, HK. et al. Production and characterization of keratinase fromParacoccus sp. WJ-98. Biotechnol Bioproc E 9, 17 (2004).

Download citation

  • Received:

  • Accepted:

  • DOI:


  • production
  • characterization
  • keratinase
  • Paracoccus sp. WJ-98