Skip to main content

Advertisement

Log in

Möglichkeiten zur chirurgischen Therapie von Knorpeldefekten — Teil 2: Chirurgische Behandlungsoptionen zur biologischen Knorpelreparatur

Current concepts in surgical treatment of articular cartilage defects — Part 2: Surgical treatment options for biologic cartilage repair

  • Übersicht
  • Published:
Acta Chirurgica Austriaca Aims and scope Submit manuscript

Zusammenfassung

Grundlagen: Für die normale Gelenkfunktion ist der hyaline Knorpel zur Lastverteilung der mechanischen Kräfte und als Gleitfläche für reibungsarme Bewegungen unerläßlich. Das artikuläre Knorpelgewebe besteht aus einer einzigen Zellpopulation, integriert in ein dreidimensionales Netzwerk hochorganisierter Matrixstrukturen. Dieser feingewebliche Aufbau bestimmt die einzigartigen mechanischen Eigenschaften, limitiert aber auch die physiologischen Reparationsmöglichkeiten von Knorpeldefekten.

Methodik: Diese Übersicht beschreibt die Grundlagen der Knorpelbiologie und die Mechanismen der Knorpelreparatur, und behandelt die experimentellen und klinischen Ergebnisse chirurgischer Techniken zur biologischen Therapie umschriebener Knorpeldefekte.

Ergebnisse: Der Gelenkknorpel besitzt nur eine begrenzte Fähigkeit zur Regeneration. Die chirurgischen Techniken zur Therapie von lokalisierten Defekten der Gelenkoberfläche versuchen durch die Integration biologischer Mechanismen die mangelnde Regenerationsfähigkeit artikulären Knorpels zu überwinden. Die Techniken der Transplantation von chondrogenen Geweben wurden in jüngster Zeit durch die Defektauffüllung mit autologen Chondrozyten erweitert. Wie bei allen neuen Entwicklungen besteht sowohl Skepsis, wie auch Begeisterung und faszinierende Spannung. Zur objektiven Beurteilung ist aber auch ein gesundes Maß an kritischer Zurückhaltung erforderlich.

Schlußfolgerungen: Alle bislang zur Verfügung stehenden Methoden zur Regeneration und Reparatur von Knorpeldefekten sollten als vorläufige Ergebnisse betrachtet werden, solange sie nicht in größeren kontrollierten klinischen Studien bestätigt werden.

Summary

Background: Articular cartilage can tolerate a tremendous amount of intensive and repetitive physical stress. Cartilage is composed of chondrocytes embedded within an extracellular matrix of collagens, proteoglycans, and noncollagenous proteins. Together, these structures maintain the unique mechanical properties and manifest its striking inability to heal even the most minor injury. Both the remarkable functional characteristics and the healing limitations reflect the uniqueness of its structure and biology.

Methods: This review presents the principles of cartilage structure and the biological background of cartilage repair and gives information about the experimental and clinical experience with many of the surgical techniques for treating cartilage defects.

Results: The response of cartilage to injuries differs from that of other tissues because of its avascularity, the immobility of chondrocytes and the limited ability of mature chondrocytes to proliferate and alter their synthetic patterns. Surgical therapeutic efforts in treating cartilage defects have focused on bringing new cells and tissues capable of chondrogenesis into the lesions and facilitating the access to the vascular system.

Conclusions: Although there are many exciting new concepts that warrant enthusiasm, many questions remain. These issues need to be addressed by careful basic science investigations and both short- and long-term clinical trials using controlled, prospective, randomized study design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Adams ME: An analysis of clinical studies of the use of crosslinked hyaluronan, hylan, in the treatment of osteoarthritis. J Rheumatol Suppl 1993; 39: 16–18.

    PubMed  CAS  Google Scholar 

  2. Aichroth P: Osteochondral fractures and their relationship to osteochondritis dissecans of the knee. An experimental study in animals. J Bone Joint Surg [Br] 1971; 53: 448–454.

    CAS  Google Scholar 

  3. Aigner T, Reichenberger E, Bertling W, Kirsch T, Stoss H, von der Mark K: Type X collagen expression in osteoarthritic and rheumatoid articular cartilage. Virchows Arch B Cell Pathol Incl Mol Pathol 1993; 63: 205–211.

    PubMed  CAS  Google Scholar 

  4. Angele P, Faltenmeier H, Kujat R, Englert C, Hente R, Nerlich M, Marlovits S, Vécsei V: Amplifikationsoptimierung humaner Chondrozyten durch Wachstumsfaktoren. Acta Chir Austriaca 1999; 31: 257–259.

    Google Scholar 

  5. Angermann P, Riegels-Nielsen P, Pedersen H: Osteochondritis dissecans of the femoral condyle treated with periosteal transplantation. Poor outcome in 14 patients followed for 6–9 years. Acta Orthop Scand 1998; 69: 595–597.

    PubMed  CAS  Google Scholar 

  6. Athanasiou KA, Fischer R, Niederauer GG, Puhl W: Effects of excimer laser on healing of articular cartilage in rabbits. J Orthop Res 1995; 13: 483–494.

    PubMed  CAS  Google Scholar 

  7. Aydelotte MB, Greenhill RR, Kuettner KE: Differences between sub-populations of cultured bovine articular chondrocytes. II. Proteoglycan metabolism. Connect Tissue Res 1988; 18: 223–234.

    PubMed  CAS  Google Scholar 

  8. Aydelotte MB, Kuettner KE: Differences between sub-populations of cultured bovine articular chondrocytes. I. Morphology and cartilage matrix production. Connect Tissue Res 1988; 18: 205–222.

    PubMed  CAS  Google Scholar 

  9. Baker B, Becker RO, Spadaro J: A study of electrochemical enhancement of articular cartilage repair. Clin Orthop 1974; 102: 251–267.

    PubMed  Google Scholar 

  10. Bauer M, Jackson RW: Chondral lesions of the femoral condyles: a system of arthroscopic classification. Arthroscopy 1988; 4: 97–102.

    PubMed  CAS  Google Scholar 

  11. Baumgaertner MR, Cannon WD, Jr, Vittori JM, Schmidt ES, Maurer RC: Arthroscopic debridement of the arthritic knee. Clin Orthop 1990; 253: 197–202.

    PubMed  Google Scholar 

  12. Beaver RJ, Mahomed M, Backstein D, Davis A, Zukor DJ, Gross AE: Fresh osteochondral allografts for post-traumatic defects in the knee. A survivorship analysis. J Bone Joint Surg [Br] 1992; 74: 105–110.

    CAS  Google Scholar 

  13. Behrens F, Shepard N, Mitchell N: Metabolic recovery of articular cartilage after intra-articular injections of glucocorticoid. J Bone Joint Surg [Am] 1976; 58: 1157–1160.

    CAS  Google Scholar 

  14. Bentley G: Articular cartilage studies and osteoarthrosis. Ann R Coll Surg Engl 1975; 57: 86–100.

    PubMed  CAS  Google Scholar 

  15. Bentley G, Greer RBd: Homotransplantation of isolated epiphyseal and articular cartilage chondrocytes into joint surfaces of rabbits. Nature 1971; 230: 385–388.

    PubMed  CAS  Google Scholar 

  16. Bert JM: Role of abrasion arthroplasty and debridement in the management of osteoarthritis of the knee. Rheum Dis Clin North Am 1993; 19: 725–739.

    PubMed  CAS  Google Scholar 

  17. Bert JM, Maschka K: The arthroscopic treatment of unicompartmental gonarthrosis: a five-year follow-up study of abrasion arthroplasty plus arthroscopic debridement and arthroscopic debridement alone. Arthroscopy 1989; 5: 25–32.

    PubMed  CAS  Google Scholar 

  18. Bobic V: Arthroscopic osteochondral autograft transplantation in anterior cruciate ligament reconstruction: a preliminary clinical study. Knee Surg Sports Traumatol Arthrosc 1996; 3: 262–264.

    PubMed  CAS  Google Scholar 

  19. Bouwmeester SJ, Beckers JM, Kuijer R, van der Linden AJ, Bulstra SK: Long-term results of rib perichondrial grafts for repair of cartilage defects in the human knee. Int Orthop 1997; 21: 313–317.

    PubMed  CAS  Google Scholar 

  20. Breinan HA, Minas T, Hsu HP, Nehrer S, Sledge CB, Spector M: Effect of cultured autologous chondrocytes on repair of chondral defects in a canine model. J Bone Joint Surg Am 1997; 79: 1439–1451.

    PubMed  CAS  Google Scholar 

  21. Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L: Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 1994; 331: 889–895.

    PubMed  CAS  Google Scholar 

  22. Brittberg M, Nilsson A, Lindahl A, Ohlsson C, Peterson L: Rabbit articular cartilage defects treated with autologous cultured chondrocytes. Clin Orthop 1996; 326: 270–283.

    PubMed  Google Scholar 

  23. Browner BD: What’s new in orthopaedic surgery. J Am Coll Surg 1997; 184: 169–176.

    PubMed  CAS  Google Scholar 

  24. Bruns J, Kersten P, Lierse W, Silbermann M: Autologous rib perichondrial grafts in experimentally induced osteochondral lesions in the sheep-knee joint: morphological results. Virchows Arch A Pathol Anat Histopathol 1992; 421: 1–8.

    PubMed  CAS  Google Scholar 

  25. Bruns J, Steinhagen J: Transplantation chondrogener Gewebe zur Behandlung von Gelenkknorpeldefekten. Orthopäde 1999; 28: 52–60.

    PubMed  CAS  Google Scholar 

  26. Buckwalter JA: Activity vs. rest in the treatment of bone, soft tissue and joint injuries. Iowa Orthop J 1995; 15: 29–42.

    PubMed  CAS  Google Scholar 

  27. Buckwalter JA, Lohmander S: Operative treatment of osteoarthrosis. Current practice and future development. J Bone Joint Surg Am 1994; 76: 1405–1418.

    PubMed  CAS  Google Scholar 

  28. Buckwalter JA, Mankin HJ: Articular cartilage: tissue design and chondrocyte-matrix interactions. Instr Course Lect 1998; 47: 477–486.

    PubMed  CAS  Google Scholar 

  29. Buckwalter JA, Mankin HJ: Articular cartilage repair and transplantation. Arthritis Rheum 1998; 41: 1331–1342.

    PubMed  CAS  Google Scholar 

  30. Buckwalter JA, Mankin HJ: Articular cartilage: degeneration and osteoarthritis, repair, regeneration, and transplantation. Instr Course Lect 1998; 47: 487–504.

    PubMed  CAS  Google Scholar 

  31. Chandler HP, Reineck FT, Wixson RL, McCarthy JC: Total hip replacement in patients younger than thirty years old. A five-year follow-up study. J Bone Joint Surg [Am] 1981; 63: 1426–1434.

    CAS  Google Scholar 

  32. Chen FS, Frenkel SR, Di Cesare PE: Repair of articular cartilage defects: part II. Treatment options. Am J Orthop 1999; 28: 88–96.

    PubMed  CAS  Google Scholar 

  33. Chen FS, Frenkel SR, Di Cesare PE: Repair of articular cartilage defects: part I. Basic Science of cartilage healing. Am J Orthop 1999; 28: 31–33.

    PubMed  CAS  Google Scholar 

  34. Chesterman PJ, Smith AU: Homotransplantation of articular cartilage and isolated chondrocytes. An experimental study in rabbits. J Bone Joint Surg [Br] 1968; 50: 184–197.

    CAS  Google Scholar 

  35. Cheung HS, Cottrell WH, Stephenson K, Nimni ME: In vitro collagen biosynthesis in healing and normal rabbit articular cartilage. J Bone Joint Surg [Am] 1978; 60: 1076–1081.

    CAS  Google Scholar 

  36. Collier MA, Haugland LM, Bellamy J, Johnson LL, Rohrer MD, Walls RC, Bartels KE: Effects of holmium: YAG laser on equine articular cartilage and subchondral bone adjacent to traumatic lesions: a histopathological assessment. Arthroscopy 1993; 9: 536–545.

    PubMed  CAS  Google Scholar 

  37. Convery FR, Meyers MH, Akeson WH: Fresh osteochondral allografting of the femoral condyle. Clin Orthop 1991; 273: 139–145.

    PubMed  Google Scholar 

  38. Coutts RD, Woo SL, Amiel D, von Schroeder HP, Kwan MK: Rib perichondrial autografts in full-thickness articular cartilage defects in rabbits. Clin Orthop 1992; 275: 263–273.

    PubMed  Google Scholar 

  39. Curl WW, Krome J, Gordon ES, Rushing J, Smith BP, Poehling GG: Cartilage injuries: a review of 31,516 knee arthroscopies. Arthroscopy 1997; 13: 456–460.

    PubMed  CAS  Google Scholar 

  40. Curtin WA, Reville WJ, Brady MP: Quantitative and morphological observations on the ultrastructure of articular tissue generated from free periosteal grafts. J Electron Microsc (Tokyo) 1992; 41: 82–90.

    CAS  Google Scholar 

  41. Czitrom AA, Keating S, Gross AE: The viability of articular cartilage in fresh osteochondral allografts after clinical transplantation. J Bone Joint Surg [Am] 1990; 72: 574–581.

    CAS  Google Scholar 

  42. Dekel S, Weissman SL: Joint changes after overuse and peak overloading of rabbit knees in vivo. Acta Orthop Scand 1978; 49: 519–528.

    PubMed  CAS  Google Scholar 

  43. DePalma AF, McKeever CD, Subin DK: Process of repair of articular cartilage demonstrated by histology and autoradiography with tritiated thymidine. Clin Orthop 1966; 48: 229–242.

    PubMed  CAS  Google Scholar 

  44. Desjardins MR, Hurtig MB, Palmer NC: Heterotopic transfer of fresh and cryopreserved autogenous articular cartilage in the horse. Vet Surg 1991; 20: 434–445.

    PubMed  CAS  Google Scholar 

  45. Dougados M, Nguyen M, Listrat V, Amor B: High molecular weight sodium hyaluronate (hyalectin) in osteoarthritis of the knee: a 1 year placebo-controlled trial. Osteoarthritis Cartilage 1993; 1: 97–103.

    PubMed  CAS  Google Scholar 

  46. Engkvist O, Ohlsen L: Reconstruction of articular cartilage with free autologous perichondrial grafts. An experimental study in rabbits. Scand J Plast Reconstr Surg 1979; 13: 269–274.

    PubMed  CAS  Google Scholar 

  47. Engkvist O, Skoog V, Pastacaldi P, Yormuk E, Juhlin R: The cartilaginous potential of the perichondrium in rabbit ear and rib. A comparative study in vivo and in vitro. Scand J Plast Reconstr Surg 1979; 13: 275–280.

    PubMed  CAS  Google Scholar 

  48. Engkvist O, Wilander E: Formation of cartilage from rib perichondrium grafted to an articular defect in the femur condyle of the rabbit. Scand J Plast Reconstr Surg 1979; 13: 371–376.

    PubMed  CAS  Google Scholar 

  49. Evans CH, Mazzocchi RA, Nelson DD, Rubash HE: Experimental arthritis induced by intraarticular injection of allogenic cartilaginous particles into rabbit knees. Arthritis Rheum 1984; 27: 200–207.

    PubMed  CAS  Google Scholar 

  50. Ficat RP, Ficat C, Gedeon P, Toussaint JB: Spongialization: a new treatment for diseased patellae. Clin Orthop 1979; 144: 74–83.

    PubMed  Google Scholar 

  51. Friedman MJ, Berasi CC, Fox JM, Del Pizzo W, Snyder SJ, Ferkel RD: Preliminary results with abrasion arthroplasty in the osteoarthritic knee. Clin Orthop 1984; 182: 200–205.

    PubMed  Google Scholar 

  52. Furukawa T, Eyre DR, Koide S, Glimcher MJ: Biochemical studies on repair cartilage resurfacing experimental defects in the rabbit knee. J Bone Joint Surg [Am] 1980; 62: 79–89.

    CAS  Google Scholar 

  53. Garrett JC: Fresh osteochondral allografts for treatment of articular defects in osteochondritis dissecans of the lateral femoral condyle in adults. Clin Orthop 1994; 303: 33–37.

    PubMed  Google Scholar 

  54. Ghadially FN, Ailsby RL, Oryschak AF: Scanning electron microscopy of superficial defects in articular cartilage. Ann Rheum Dis 1974; 33: 327–332.

    PubMed  CAS  Google Scholar 

  55. Ghadially FN, Thomas I, Oryschak AF, Lalonde JM: Long-term results of superficial defects in articular cartilage: a scanning electron-microscope study. J Pathol 1977; 121: 213–217.

    PubMed  CAS  Google Scholar 

  56. Ghadially JA, Ghadially R, Ghadially FN: Long-term results of deep defects in articular cartilage. A scanning electron microscope study. Virchows Arch B Cell Pathol 1977; 25: 125–136.

    PubMed  CAS  Google Scholar 

  57. Gilbert JE: Current treatment options for the restoration of articular cartilage. Am J Knee Surg 1998; 11: 42–46.

    PubMed  CAS  Google Scholar 

  58. Glossop ND, Jackson RW, Koort HJ, Reed SC, Randle JA: The excimer laser in orthopaedics. Clin Orthop 1995; 310: 72–81.

    PubMed  Google Scholar 

  59. Goymann V: Abrasionsarthroplastik. Orthopäde 1999; 28: 11–18.

    PubMed  CAS  Google Scholar 

  60. Grande DA, Pitman MI, Peterson L, Menche D, Klein M: The repair of experimentally produced defects in rabbit articular cartilage by autologous chondrocyte transplantation. J Orthop Res 1989; 7: 208–218.

    PubMed  CAS  Google Scholar 

  61. Grant WT, Wang GJ, Balian G: Type X collagen synthesis during endochondral ossification in fracture repair. J Biol Chem 1987; 262: 9844–9849.

    PubMed  CAS  Google Scholar 

  62. Gray ML, Pizzanelli AM, Grodzinsky AJ, Lee RC: Mechanical and physiochemical determinants of the chondrocyte biosynthetic response. J Orthop Res 1988; 6: 777–792.

    PubMed  CAS  Google Scholar 

  63. Grodzinsky AJ, Roth V, Myers E, Grossman WD, Mow VC: The significance of electromechanical and osmotic forces in the nonequilibrium swelling behavior of articular cartilage in tension. J Biomech Eng 1981; 103: 221–231.

    PubMed  CAS  Google Scholar 

  64. Gross AE, McKee NH, Pritzker KP, Langer F: Reconstruction of skeletal deficits at the knee. A comprehensive osteochondral transplant program. Clin Orthop 1983; 174: 96–106.

    PubMed  Google Scholar 

  65. Guerne PA, Blanco F, Kaelin A, Desgeorges A, Lotz M: Growth factor responsiveness of human articular chondrocytes in aging and development. Arthritis Rheum 1995; 38: 960–968.

    PubMed  CAS  Google Scholar 

  66. Hagiwara H, Schroter-Kermani C, Merker HJ: Localization of collagen type VI in articular cartilage of young and adult mice. Cell Tissue Res 1993; 272: 155–160.

    PubMed  CAS  Google Scholar 

  67. Ham AW: A histological study of the early phase of bone repair. J Bone Joint Surg 1930; 12: 827.

    Google Scholar 

  68. Hangody L, Kish G, Karpati Z, Szerb I, Udvarhelyi I: Arthroscopic autogenous osteochondral mosaicplasty for the treatment of femoral condylar articular defects. A preliminary report. Knee Surg Sports Traumatol Arthrosc 1997; 5: 262–267.

    PubMed  CAS  Google Scholar 

  69. Hangody L, Kish G, Karpati Z, Udvarhelyi I, Szigeti I, Bely M: Mosaicplasty for the treatment of articular cartilage defects: application in clinical practice. Orthopedics 1998; 21: 751–756.

    PubMed  CAS  Google Scholar 

  70. Hardie EM, Carlson CS, Richardson DC: Effect of Nd: YAG laser energy on articular cartilage healing in the dog. Lasers Surg Med 1989; 9: 595–601.

    PubMed  CAS  Google Scholar 

  71. Hardingham TE, Muir H, Kwan MK, Lai WM, Mow VC: Viscoelastic properties of proteoglycan solutions with varying proportions present as aggregates. J Orthop Res 1987; 5: 36–46.

    PubMed  CAS  Google Scholar 

  72. Häuselmann HJ, Hunziker EB: Läsionen des Gelenkknorples und ihre Behandlung. Schweiz Med Wochenschr 1997; 127: 1911–1924.

    PubMed  Google Scholar 

  73. Hedbom E, Heinegard D: Binding of fibromodulin and decorin to separate sites on fibrillar collagens. J Biol Chem 1993; 268: 307–312.

    Google Scholar 

  74. Hedlund H, Mengarelli-Widholm S, Heinegard D, Reinholt FP, Svensson O: Fibromodulin distribution and association with collagen. Matrix Biol 1994; 14: 227–232.

    PubMed  CAS  Google Scholar 

  75. Hoikka VE, Jaroma HJ, Ritsila VA: Reconstruction of the patellar articulation with periosteal grafts. 4-year follow-up of 13 cases. Acta Orthop Scand 1990; 61: 36–39.

    PubMed  CAS  Google Scholar 

  76. Homminga GN, Bulstra SK, Bouwmeester PS, van der Linden AJ: Perichondral grafting for cartilage lesions of the knee. J Bone Joint Surg [Br] 1990; 72: 1003–1007.

    CAS  Google Scholar 

  77. Homminga GN, Bulstra SK, Kuijer R, van der Linden AJ: Repair of sheep articular cartilage defects with a rabbit costal perichondrial graft. Acta Orthop Scand 1991; 62: 415–418.

    PubMed  CAS  Google Scholar 

  78. Hubbard MJ: Articular debridement versus washout for degeneration of the medial femoral condyle. A five-year study. J Bone Joint Surg Br 1996; 78: 217–219.

    PubMed  CAS  Google Scholar 

  79. Hunter W: On the structure and diseases of articular cartilages. Philos Trans R Soc London Biol 1743; 42: 514–521.

    Google Scholar 

  80. Hunziker EB, Kapfinger E: Removal of proteoglycans from the surface of defects in articular cartilage transiently enhances coverage by repair cells. J Bone Joint Surg Br 1998; 80: 144–150.

    PubMed  CAS  Google Scholar 

  81. Hunziker EB, Rosenberg LC: Repair of partial-thickness defects in articular cartilage: cell recruitment from the synovial membrane. J Bone Joint Surg Am 1996; 78: 721–733.

    PubMed  CAS  Google Scholar 

  82. Insall J: The Pridie debridement operation for osteoarthritis of the knee. Clin Orthop 1974; 101: 61–67.

    PubMed  Google Scholar 

  83. Iwata H: Pharmacologic and clinical aspects of intraarticular injection of hyaluronate. Clin Orthop 1993; 289: 285–291.

    PubMed  Google Scholar 

  84. Jackson RW: Meniscal and articular cartilage injury in sport. J R Coll Surg Edinb 1989; 34: S15-S17.

    PubMed  CAS  Google Scholar 

  85. Jakob RP, Gautier E: Komplexes Knietrauma — Knorpelverletzungen. Swiss Surg 1998; 6: 296–310.

    PubMed  Google Scholar 

  86. Johnson DL, Urban WP, Jr., Caborn DN, Vanarthos WJ, Carlson CS: Articular cartilage changes seen with magnetic resonance imaging- detected bone bruises associated with acute anterior cruciate ligament rupture. Am J Sports Med 1998; 26: 409–414.

    PubMed  CAS  Google Scholar 

  87. Johnson LL: Arthroscopic abrasion arthroplasty historical and pathologic perspective: present status. Arthroscopy 1986; 2: 54–69.

    PubMed  CAS  Google Scholar 

  88. Kim HK, Moran ME, Salter RB: The potential for regeneration of articular cartilage in defects created by chondral shaving and subchondral abrasion. An experimental investigation in rabbits. J Bone Joint Surg [Am] 1991; 73: 1301–1315.

    CAS  Google Scholar 

  89. Korkala O, Kuokkanen H: Autogenous osteoperiosteal grafts in the reconstruction of full-thickness joint surface defects. Int Orthop 1991; 15: 233–237.

    PubMed  CAS  Google Scholar 

  90. Korkala OL, Kuokkanen HO: Autoarthroplasty of knee cartilage defects by osteoperiosteal grafts. Arch Orthop Trauma Surg 1995; 114: 253–256.

    PubMed  CAS  Google Scholar 

  91. Kwan MK, Lai WM, Mow VC: Fundamentals of fluid transport through cartilage in compression. Ann Biomed Eng 1984; 12: 537–558.

    PubMed  CAS  Google Scholar 

  92. Lane JM, Brighton CT, Ottens HR, Lipton M: Joint resurfacing in the rabbit using an autologous osteochondral graft. J Bone Joint Surg [Am] 1977; 59: 218–222.

    CAS  Google Scholar 

  93. Lee RC, Frank EH, Grodzinsky AJ, Roylance DK: Oscillatory compressional behavior of articular cartilage and its associated electromechanical properties. J Biomech Eng 1981; 103: 280–292.

    Article  PubMed  CAS  Google Scholar 

  94. Lefkoe TP, Trafton PG, Ehrlich MG, Walsh WR, Dennehy DT, Barrach HJ, Akelman E: An experimental model of femoral condylar defect leading to osteoarthrosis. J Orthop Trauma 1993; 7: 458–467.

    PubMed  CAS  Google Scholar 

  95. Lewandowska K, Choi HU, Rosenberg LC, Zardi L, Culp LA: Fibronectin-mediated adhesion of fibroblasts: inhibition by dermatan sulfate proteoglycan and evidence for a cryptic glycosaminoglycan- binding domain. J Cell Biol 1987; 105: 1443–1454.

    PubMed  CAS  Google Scholar 

  96. Lippiello L, Chakkalakal D, Connolly JF: Pulsing direct current-induced repair of articular cartilage in rabbit osteochondral defects. J Orthop Res 1990; 8: 266–275.

    PubMed  CAS  Google Scholar 

  97. Lotz M, Blanco FJ, von Kempis J, Dudler J, Maier R, Villiger PM, Geng Y: Cytokine regulation of chondrocyte functions. J Rheumatol Suppl 1995; 43: 104–108.

    PubMed  CAS  Google Scholar 

  98. MacGinitie LA, Gluzband YA, Grodzinsky AJ: Electric field stimulation can increase protein synthesis in articular cartilage explants. J Orthop Res 1994; 12: 151–160.

    PubMed  CAS  Google Scholar 

  99. Mahomed MN, Beaver RJ, Gross AE: The long-term success of fresh, small fragment osteochondral allografts used for intraarticular post-traumatic defects in the knee joint. Orthopedics 1992; 15: 1191–1199.

    PubMed  CAS  Google Scholar 

  100. Mankin HJ: The reaction of articular cartilage to injury and osteoarthritis. N Engl J Med 1974; 291: 1335–1340.

    PubMed  CAS  Google Scholar 

  101. Mankin HJ: The response of articular cartilage to mechanical injury. J Bone Joint Surg [Am] 1982; 64: 460–466.

    CAS  Google Scholar 

  102. Mankin HJ: The reaction of articular cartilage to injury and osteoarthritis. N Engl J Med 1974; 291: 1285–1292.

    PubMed  CAS  Google Scholar 

  103. Mankin HJ, Conger KA: The acute effects of intra-articular hydrocortisone on articular cartilage in rabbits. J Bone Joint Surg [Am] 1966; 48: 1383–1388.

    CAS  Google Scholar 

  104. Marcelino J, McDevitt CA: Attachment of articular cartilage chondrocytes to the tissue form of type VI collagen. Biochem Biophys Acta 1995; 1249: 180–188.

    PubMed  Google Scholar 

  105. Marlovits S, Kutscha-Lissberg F, Macfelda K, Marlovits T, Moser D, Vécsei V: Bahaviour of aged human articular chondrocytes in cell culture, in FASEB J Abst, 1997, p A427 (2470).

  106. Matsusue Y, Yamamuro T, Hama H: Arthroscopic multiple osteochondral transplantation to the chondral defect in the knee associated with anterior cruciate ligament disruption. Arthroscopy 1993; 9: 318–321.

    PubMed  CAS  Google Scholar 

  107. McDermott AG, Langer F, Pritzker KP, Gross AE: Fresh small-fragment osteochondral allografts. Long-term follow-up study on first 100 cases. Clin Orthop 1985; 179: 96–102.

    Google Scholar 

  108. Meachim G, Roberts C: Repair of the joint surface from subarticular tissue in the rabbit knee. J Anat 1971; 109: 317–327.

    PubMed  CAS  Google Scholar 

  109. Messner K, Gillquist J: Cartilage repair. A critical review. Acta Orthop Scand 1996; 67: 523–529.

    PubMed  CAS  Google Scholar 

  110. Meyers MH: Resurfacing of the femoral head with fresh osteochondral allografts. Long-term results. Clin Orthop 1985; 197: 111–114.

    PubMed  Google Scholar 

  111. Meyers MH, Akeson W, Convery FR: Resurfacing of the knee with fresh osteochondral allograft. J Bone Joint Surg [Am] 1989; 71: 704–713.

    CAS  Google Scholar 

  112. Minas T, Nehrer S: Current concepts in the treatment of articular cartilage defects. Orthopedics 1997; 20: 525–538.

    PubMed  CAS  Google Scholar 

  113. Minas T, Peterson L: Advanced techniques in autologous chondrocyte transplantation. Clin Sports Med 1999; 18: 13–44.

    PubMed  CAS  Google Scholar 

  114. Mitchell N, Shepard N: The resurfacing of adult rabbit articular cartilage by multiple perforations through the subchondral bone. J Bone Joint Surg [Am] 1976; 58: 230–233.

    CAS  Google Scholar 

  115. Mooney V, Ferguson AB, Jr.: The influence of immobilization and motion on the formation of fibrocartilage in the repair granuloma after joint resection in the rabbit. J Bone Joint Surg [Am] 1966; 48: 1145–1155.

    CAS  Google Scholar 

  116. Moran ME, Kim HK, Salter RB: Biological resurfacing of full-thickness defects in patellar articular cartilage of the rabbit. Investigation of autogenous periosteal grafts subjected to continuous passive motion. J Bone Joint Surg [Br] 1992; 74: 659–667.

    CAS  Google Scholar 

  117. Mow VC, Holmes MH, Lai WM: Fluid transport and mechanical properties of articular cartilage: a review. J Biomech 1984; 17: 377–394.

    PubMed  CAS  Google Scholar 

  118. Nagamoto N, Iyama K, Kitaoka M, Ninomiya Y, Yoshioka H, Mizuta H, Takagi K: Rapid expression of collagen type X gene of non-hypertrophic chondrocytes in the grafted chick periosteum demonstrated by in situ hybridization. J Histochem Cytochem 1993; 41: 679–684.

    PubMed  CAS  Google Scholar 

  119. Newman AP: Articular cartilage repair. Am J Sports Med 1998; 26: 309–324.

    PubMed  CAS  Google Scholar 

  120. Niedermann B, Boe S, Lauritzen J, Rubak JM: Glued periosteal grafts in the knee. Acta Orthop Scand 1985; 56: 457–460.

    PubMed  CAS  Google Scholar 

  121. Noguchi T, Oka M, Fujino M, Neo M, Yamamuro T: Repair of osteochondral defects with grafts of cultured chondrocytes. Comparison of allografts and isografts. Clin Orthop 1994; 302: 251–258.

    Google Scholar 

  122. O’Driscoll SW: The healing and regeneration of articular cartilage. J Bone Joint Surg Am 1998; 80: 1795–1812.

    PubMed  CAS  Google Scholar 

  123. O’Driscoll SW, Keeley FW, Salter RB: Durability of regenerated articular cartilage produced by free autogenous periosteal grafts in major full-thickness defects in joint surfaces under the influence of continuous passive motion. A follow-up report at one year. J Bone Joint Surg [Am] 1988; 70: 595–606.

    CAS  Google Scholar 

  124. O’Driscoll SW, Salter RB: The repair of major osteochondral defects in joint surfaces by neochondrogenesis with autogenous osteoperiosteal grafts stimulated by continuous passive motion. An experimental investigation in the rabbit. Clin Orthop 1986; 208: 131–140.

    PubMed  Google Scholar 

  125. O’Driscoll SW, Salter RB: The induction of neochondrogenesis in free intra-articular periosteal autografts under the influence of continuous passive motion. An experimental investigation in the rabbit. J Bone Joint Surg [Am] 1984; 66: 1248–1257.

    CAS  Google Scholar 

  126. Outerbridge HK, Outerbridge AR, Outerbridge RE: The use of a lateral patellar autologous graft for the repair of a large osteochondral defect in the knee. J Bone Joint Surg Am 1995; 77: 65–72.

    PubMed  CAS  Google Scholar 

  127. Outerbridge HK, Outerbridge AR, Outerbridge RE, Smith DE: The use of lateral patellar autologous grafts for the repair of large osteochondral defects in the knee. Acta Orthop Belg 1999; 65: 129–135.

    PubMed  Google Scholar 

  128. Outerbridge RE: The etiology of chondromalacia patellae. JBJS (Br) 1961; 43: 752–767.

    Google Scholar 

  129. Pastacaldi P, Engkvist O: Perichondrial wrist arthroplasty in rheumatoid patients. Hand 1979; 11: 184–190.

    PubMed  CAS  Google Scholar 

  130. Pelletier JP, Martel-Pelletier J: The pathophysiology of osteoarthritis and the implication of the use of hyaluronan and hylan as therapeutic agents in visco-supplementation. J Rheumatol Suppl 1993; 39: 19–24.

    PubMed  CAS  Google Scholar 

  131. Peterson L: The long term outcome of autologous chondrocyte transplantation for full thickness chondral defects of the knee. 2nd Symposium of the International Cartilage Repair Society. Boston, Massachusetts, 1998.

  132. Petrie PW: Aetiology of osteochondritis dissecans. Failure to establish a familial background. J Bone Joint Surg [Br] 1977; 59: 366–367.

    CAS  Google Scholar 

  133. Poole AR, Pidoux I, Reiner A, Rosenberg L: An immunoelectron microscope study of the organization of proteoglycan monomer, link protein, and collagen in the matrix of articular cartilage. J Cell Biol 1982; 93: 921–937.

    PubMed  CAS  Google Scholar 

  134. Poole AR, Rosenberg LC, Reiner A, Ionescu M, Bogoch E, Roughley PJ: Contents and distributions of the proteoglycans decorin and biglycan in normal and osteoarthritic human articular cartilage. J Orthop Res 1996; 14: 681–689.

    PubMed  CAS  Google Scholar 

  135. Poole CA, Flint MH, Beaumont BW: Morphological and functional interrelationships of articular cartilage matrices. J Anat 1984; 138: 113–138.

    PubMed  Google Scholar 

  136. Pridie KH: A method of resurfacing osteoarthritic knee joints. J Bone Joint Surg [Br] 1959; 41: 618–621.

    Google Scholar 

  137. Rae PJ, Noble J: Arthroscopic drilling of osteochondral lesions of the knee. J Bone Joint Surg [Br] 1989; 71: 534.

    CAS  Google Scholar 

  138. Ranawat CS, Insall J, Shine J: Duo-condylar knee arthroplasty: hospital for special surgery design. Clin Orthop 1976; 120: 76–82.

    PubMed  Google Scholar 

  139. Rand JA: Role of arthroscopy in osteoarthritis of the knee. Arthroscopy 1991; 7: 358–363.

    PubMed  CAS  Google Scholar 

  140. Redler I, Mow VC, Zimny ML, Mansell J: The ultrastructure and biomechanical significance of the tidemark of articular cartilage. Clin Orthop 1975; 112: 357–362.

    PubMed  Google Scholar 

  141. Reed SC, Jackson RW, Glossop N, Randle J: An in vivo study of the effect of excimer laser irradiation on degenerate rabbit articular cartilage. Arthroscopy 1994; 10: 78–84.

    Article  PubMed  CAS  Google Scholar 

  142. Registry Genzyme: Cartilage Repair Registry, Volume 5, 1999.

  143. Ritsila VA, Santavirta S, Alhopuro S, Poussa M, Jaroma H, Rubak JM, Eskola A, Hoikka V, Snellman O, Osterman K: Periosteal and perichondral grafting in reconstructive surgery. Clin Orthop 1994; 302: 259–265.

    PubMed  Google Scholar 

  144. Rodrigo JJ, Steadman JR, Silliman JF, Fulstone HA: Improvement of full-thickness chondral defect healing in the human knee after debridment and microfracture using continous passive motion. Am J Knee Surg 1994; 7: 109–116.

    Google Scholar 

  145. Rosenberg L, Choi HU, Tang LH, Pal S, Johnson T, Lyons DA, Laue TM: Proteoglycans of bovine articular cartilage. The effects of divalent cations on the biochemical properties of link protein. J Biol Chem 1991; 266: 7016–7024.

    PubMed  CAS  Google Scholar 

  146. Roughley PJ, Lee ER: Cartilage proteoglycans: structure and potential functions. Microsc Res Tech 1994; 28: 385–397.

    PubMed  CAS  Google Scholar 

  147. Rubak JM: Reconstruction of articular cartilage defects with free periosteal grafts. An experimental study. Acta Orthop Scand 1982; 53: 175–180.

    PubMed  CAS  Google Scholar 

  148. Rubak JM, Poussa M, Ritsila V: Effects of joint motion on the repair of articular cartilage with free periosteal grafts. Acta Orthop Scand 1982; 53: 187–191.

    PubMed  CAS  Google Scholar 

  149. Salter RB: The biologic concept of continuous passive motion of synovial joints. The first 18 years of basic research and its clinical application. Clin Orthop 1989; 242: 12–25.

    PubMed  Google Scholar 

  150. Salter RB, Hamilton HW, Wedge JH, Tile M, Torode IP, O’Driscoll SW, Murnaghan JJ, Saringer JH: Clinical application of basic research on continuous passive motion for disorders and injuries of synovial joints: a preliminary report of a feasibility study. J Orthop Res 1984; 1: 325–342.

    PubMed  CAS  Google Scholar 

  151. Salter RB, Simmonds DF, Malcolm BW, Rumble EJ, MacMichael D, Clements ND: The biological effect of continuous passive motion on the healing of full-thickness defects in articular cartilage. An experimental investigation in the rabbit. J Bone Joint Surg [Am] 1980; 62: 1232–1251.

    CAS  Google Scholar 

  152. Schmid A, Schmid F: Results after cartilage shaving studied by electron microscopy. Am J Sports Med 1987; 15: 386–387.

    Google Scholar 

  153. Seradge H, Kutz JA, Kleinert HE, Lister GD, Wolff TW, Atasoy E: Perichondrial resurfacing arthroplasty in the hand. J Hand Surg [Am] 1984; 9: 880–886.

    CAS  Google Scholar 

  154. Shapiro F, Koide S, Glimcher MJ: Cell origin and differentiation in the repair of full-thickness defects of articular cartilage. J Bone Joint Surg Am 1993; 75: 532–553.

    PubMed  CAS  Google Scholar 

  155. Simonian PT, Sussmann PS, Wickiewicz TL, Paletta GA, Warren RF: Contact pressures at osteochondral donor sites in the knee. Am J Sports Med 1998; 26: 491–494.

    PubMed  CAS  Google Scholar 

  156. Skoog T, Johansson SH: The formation of articular cartilage from free perichondrial grafts. Plast Reconstr Surg 1976; 57: 1–6.

    PubMed  CAS  Google Scholar 

  157. Smith AU: Survival of frozen chondrocytes isolated from cartilage of adult mammals. Nature 1965; 205: 782–784.

    Google Scholar 

  158. Spindler KP, Schils JP, Bergfeld JA, Andrish JT, Weiker GG, Anderson TE, Piraino DW, Richmond BJ, Medendorp SV: Prospective study of osseous, articular, and meniscal lesions in recent anterior cruciate ligament tears by magnetic resonance imaging and arthroscopy. Am J Sports Med 1993; 21: 551–557.

    PubMed  CAS  Google Scholar 

  159. Steadman JR, Rodkey WG, Briggs KK, Rodrigo JJ: Die Technik der Mikrofrakturierung zur Beandlung von kompletten Knorpeldefekten im Kniegelenk. Orthopäde 1999; 28: 26–32.

    PubMed  CAS  Google Scholar 

  160. Stockwell RA: Chondrocytes. J Clin Pathol Suppl 1978; 12: 7–13.

    CAS  Google Scholar 

  161. Stockwell RA: The cell density of human articular and costal cartilage. J Anat 1967; 101: 753–763.

    PubMed  CAS  Google Scholar 

  162. Takaishi H, Nemoto O, Shiota M, Kikuchi T, Yamada H, Yamagishi M, Yabe Y: Type-II collagen gene expression is transiently upregulated in experimentally induced degeneration of rabbit intervertebral disc. J Orthop Res 1997; 15: 528–538.

    PubMed  CAS  Google Scholar 

  163. Tanaka T, Fujii K, Ohta M, Soshi S, Kitamura A, Murota K: Use of a guanidine extract of demineralized bone in the treatment of osteochondral defects of articular cartilage. J Orthop Res 1995; 13: 464–469.

    PubMed  CAS  Google Scholar 

  164. Thompson RC, Jr: An experimental study of surface injury to articular cartilage and enzyme responses within the joint. Clin Orthop 1975; 107: 239–248.

    PubMed  CAS  Google Scholar 

  165. Trauner KB, Nishioka NS, Flotte T, Patel D: Acute and chronic response of articular cartilage to holmium: YAG laser irradiation. Clin Orthop 1995; 310: 52–57.

    PubMed  Google Scholar 

  166. Trippel SB: Growth factor actions on articular cartilage. J Rheumatol Suppl 1995; 43: 129–132.

    PubMed  CAS  Google Scholar 

  167. Vachon A, Bramlage LR, Gabel AA, Weisbrode S: Evaluation of the repair process of cartilage defects of the equine third carpal bone with and without subchondral bone perforation. Am J Vet Res 1986; 47: 2637–2645.

    PubMed  CAS  Google Scholar 

  168. Vangsness CT, Jr., Ghaderi B: A literature review of lasers and articular cartilage. Orthopedics 1993; 16: 593–598.

    PubMed  Google Scholar 

  169. Wakitani S, Imoto K, Kimura T, Ochi T, Matsumoto K, Nakamura T: Hepatocyte growth factor facilitates cartilage repair. Full thickness articular cartilage defect studied in rabbit knees. Acta Orthop Scand 1997; 68: 474–480.

    PubMed  CAS  Google Scholar 

  170. Woo SL, Matthews JV, Akeson WH, Amiel D, Convery FR: Connective tissue response to immobility. Correlative study of biomechanical and biochemical measurements of normal and immobilized rabbit knees. Arthritis Rheum 1975; 18: 257–264.

    PubMed  CAS  Google Scholar 

  171. Yamashita F, Sakakida K, Suzu F, Takai S: The transplantation of an autogenic osteochondral fragment for osteochondritis dissecans of the knee. Clin Orthop 1985; 201: 43–50.

    PubMed  Google Scholar 

  172. Yoshimi T, Kikuchi T, Obara T, Yamaguchi T, Sakakibara Y, Itoh H, Iwata H, Miura T: Effects of high-molecular-weight sodium hyaluronate on experimental osteoarthrosis induced by the resection of rabbit anterior cruciate ligament. Clin Orthop 1994; 298: 296–304.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Marlovits.

Additional information

Teil 1: Grundlagen der Korpelbiologie und der Heilung von Knorpeldefekten in Acta Chir Austriaca 2000; 32: 124–129.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marlovits, S., Vécsei, V. Möglichkeiten zur chirurgischen Therapie von Knorpeldefekten — Teil 2: Chirurgische Behandlungsoptionen zur biologischen Knorpelreparatur. Acta Chir. Austriaca 32, 185–194 (2000). https://doi.org/10.1007/BF02949262

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02949262

Schlüsselwörter

Keywords

Navigation