Skip to main content

Advertisement

Log in

P53 — vom prognostischen zum prädiktiven Marker

Prognostic and predictive implications of p53

  • Übersicht
  • Published:
Acta Chirurgica Austriaca Aims and scope Submit manuscript

Zusammenfassung

Grundlagen: Der Verlust der p53-Tumorsuppressor-Gen-Funktion ist ein häufiges Ereignis bei malignen Tumoren. Das Fehlen der p53-abhängigen Apoptose spielt nicht nur eine wesentliche Rolle in der Karzinogenese, sondern auch in der Chemo- und Strahlenresistenz maligner Tumoren.

Methodik: Aktuelles Wissen über die prognostische und prädiktive Bedeutung des p53 Gens in der Krebstherapie wird zusammengefaßt.

Ergebnisse: Eigene Ergebnisse in bezug auf die p53-abhängige Apoptose und deren Einfluß auf das Ansprechen auf neoadjuvante Therapie beim fortgeschrittenen Bronchuskarzinom werden präsentiert.

Schlußfolgerungen: In seinen Funktionen vereint p53 zwei komplementäre Regulative, nämlich Zelltod und Reparatur. Als Konsequenz kann somit sowohl Resistenz als auch Sensitivität gegenüber DNA-Schädigung durch p53 mediiert sein. Das Resultat einer p53-Aktivierung variiert zwischen unterschiedlichen Zelltypen und ist sowohl tumor- als auch mutationsspezifisch.

Summary

Background: Loss of function of the p53 gene is frequently found in human malignancies. Loss of p53-dependent apoptosis appears to be an important mechanism not only for carcinogenesis but also for resistance to chemotherapy. Triggering apoptosis and DNA repair, p53 regulates not only cell death but also cell preservation.

Methods: This article focuses on p53 dependent apoptosis, its contribution to response to neoadjuvant therapy, and summarizes current knowledge about the prognostic and predictive impact of p53 in cancer treatment.

Results: The dependency of p53 dependent apoptosis and response to neoadjuvant treatment in lung cancer is shown.

Conclusions: A DNA damage-induced p53 activation may contribute to resistance as well as to sensitivity to chemotherapy. P53 dependent responses differ between different cell types and appear to be tumor specific.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Begley S: The cancer killer. Neesweek 1997; 3: 36–44.

    Google Scholar 

  2. Bellamy COC: P53 and apoptosis. British Medical Bulletin 1996; 53: 522–538.

    Google Scholar 

  3. Bergh J, Norberg T, Sjögren S, Lindgren A, Holmberg L: Complete sequencing of the p53 gene provides prognostic information in breast cancer patients, particularly in relation to adjuvant systemic therapy and radiotherapy. Nature Med 1995; 1: 1029–1034.

    Article  PubMed  CAS  Google Scholar 

  4. Bergh J: Time for integration of predictive factors for selection of breast cancer patients who need postoperative therapy? J Natl Cancer Inst 1997; 89: 605–607.

    Article  PubMed  CAS  Google Scholar 

  5. Carbone DP, Mitsudomi T, Chiba I, Piantadosi S, Rusch V, Nowak JA, McIntire D, Slamon D, Gazdar A, Minna J: P53 immunostaining positivity is associated with reduced survival and is imperfectly corrlated with gene mutations in resected non-small cell lung cancer. Chest 1994; 106: 377S-381S.

    Article  PubMed  CAS  Google Scholar 

  6. Clarke AR, Gledhill S Hooper ML, Bird CC, Wyllie AH: p53 dependence or early apoptotic and proliferative responses within the mouse intestinal epithelium following gamma-irradiation. Oncogene 1994; 9: 1767–1763.

    PubMed  CAS  Google Scholar 

  7. Culotta E, Koshland DE: P53 sweeps through cancer research. Science 1993; 262: 1958–1961.

    Article  PubMed  CAS  Google Scholar 

  8. D’Amico TA, Massey M, Herndon II JE, Moore M, Harpole DH Jr: A biologic risk model for stage I lung cancer: immunohistochemical analysis of 408 patients with the use of ten molecular markers. J Thorac Cardiovasc Surg 1999; 117: 736–743.

    Article  PubMed  CAS  Google Scholar 

  9. Degeorges A, De Roquancourt A, Extra JM, Espie M, Bourstyn E, De Cremoux P, Soussi T, Marty M: Is p53 a protein that predicts the response to chemotherapy in node negative breast cancer? Breast Cancer Res Treat 1998; 47: 47–55.

    Article  PubMed  CAS  Google Scholar 

  10. Dillman RO, Seagren SL, Propert KJ, Guerra J, Eaton WL, Perry MC, Carey RW: A randomized trial of induction chemotherapy plus high-dose radiation versus radiation alone in stage III non-small-cell lung cancer. N Engl J Med 1990; 323: 940–945.

    PubMed  CAS  Google Scholar 

  11. Dillman RO, Herndon J, Seagren SL, Eaton WL Jr, Green MR: Improved survival in stage III non-small-cell lung cancer: seven-year follow-up of cancer and leukemia Group B trial (CALGB) 8433 Trial. J Natl Cancer Inst 1996; 88: 1210–1215.

    Article  PubMed  CAS  Google Scholar 

  12. Eberhardt W, Wilke H, Stamatis G, Stuschke M, Harstrick A, Menker H: Preoperative chemotherapy followed by concurrent chemoradiation therapy based on hyperfractionated accelerated radiotherapy and definitive surgery in locally advanced non-small-cell lung cancer: mature results of a phase II trial. J Clin Oncol 1998; 16: 622–634.

    PubMed  CAS  Google Scholar 

  13. Ellis P, Smith I, Ashley S, Walsh G, Ebbs S, Baum M, Sacs N, McKinna J: Clinical prognostic and predictive factors for primary chemotherapy in operable breast cancer. J Clin Oncol 1998; 16: 107–114.

    PubMed  CAS  Google Scholar 

  14. Fisher DE: Apoptosis in Cancer Therapy: Crossing the threshold. Cell 1994; 78: 539–542.

    Article  PubMed  CAS  Google Scholar 

  15. Fisher CJ, Gillett CE, Vojtesek B, Barnes DM, Millis RR: Problems with p53 immunohistochemical staining: the effect of fixation and variation in the methods of evaluation. Br. J Cancer 1994; 69: 26–31.

    PubMed  CAS  Google Scholar 

  16. Fromentel CC, Soussi T: TP53 tumor suppressor gene: a model for investigating human mutagenesis. Genes, chromosomes & cancer 1992; 2: 1–15.

    Article  Google Scholar 

  17. Gazdar AF: Molecular markers for the diagnosis and prognosis of lung cancer. Cancer 1992; 69: 1592–1599.

    Article  PubMed  CAS  Google Scholar 

  18. Greenblatt MS, Bennett WP, Hollstein M, Harris CC: Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res 1994; 54: 4855–4878.

    PubMed  CAS  Google Scholar 

  19. Harris CC, Hollstein M: Clinical implications of the p53 tumor-suppressor gene. New Engl J Med 1993; 329: 1318–1327.

    Article  PubMed  CAS  Google Scholar 

  20. Kandioler-Eckersberger D, Kappel S, Mannhalter Ch, Dekan G, End A, Krajnik G, Pirker R, Pötter R, Wolner E, Eckersberger F: TP53 genotype but not immunohistochemistry is predictive for response to cisplatinum based neoadjuvant therapy in stage III NSCLC. J Thorac Cardiovasc Surgery, 1999; 19: 744–750.

    Article  Google Scholar 

  21. Kandioler D, Födinger M, Müller MR, Mannhalter Ch, Eckersberger F, Wolner E: Carcinogenic specificity of p53 tumor suppressor gene mutations in lung cancer. J Thorac Cardiovasc Surg 1994; 107: 1095–98.

    PubMed  CAS  Google Scholar 

  22. Kandioler D, Dekan G, Pasching E, Langmann F, Mannhalter Ch, Wolner E, Eckersberger F: Anwendung von p53 Gen Analysen in der thoraxhirugischen Onkologie am Beispiel des solitären pulmonalen Rundherdes. Acta Chir Austr 1996; 28: 103–106.

    Article  Google Scholar 

  23. Kandioler D, Dekan G, End A, Pasching E, Buchmayer H, Gnant M, Langmann F, Mannhalter Ch, Eckersberger F, Wolner E: Molecular genetic differentiation between primary lung cancers and metastases of other tumors. J Thorac Cardiovasc Surg 1996; 111: 827–832.

    Article  PubMed  CAS  Google Scholar 

  24. Kandioler-Eckersberger D, Ludwig C, Taucher S, Steiner B, Rudas M, Mannhalter C, Steger G, Jakesz R: p53 genotype and major response to anthracyclin and paclitaxel based neoadjuvant treatment in breast cancer, patients. Proc Am Soc Clin Oncol Vol 17, 1998.

  25. Kastan MB, Canman CE, Leonard CJ: p53, cell cylce control and apoptosis: Implications for cancer. Cancer Metast Rev 1995; 14: 3–15.

    Article  CAS  Google Scholar 

  26. Kishimoto Y, Murakami Y, Shiraishi M, Hayashi K, Sekiya T: Aberrations of the p53 tumor suppressor gene in human non-small cell carcinomas of the lung. Cancer Res 1992; 52: 4799–4804.

    PubMed  CAS  Google Scholar 

  27. Knudson AG: Hereditary Cancer: Theme and Variations. JCO 1997; 10: 3280–3287.

    Google Scholar 

  28. Koshland DE: Molecular of the year. Science Editorial 1993; 262: 1953.

    Google Scholar 

  29. Lamb P, Crawford L: Characterization of the human p53 gene. Mol Cell Biol 1986; 6: 1379–1385.

    PubMed  CAS  Google Scholar 

  30. Lane DP: P53, guardian of the genome. Nature 1992; 358: 15–16.

    Article  PubMed  CAS  Google Scholar 

  31. Lane DP: A death in the life of p53. Nature 1993; 362: 786–787.

    Article  PubMed  CAS  Google Scholar 

  32. Lehmann TA, Bennett WP, Metcalf RA, Welsh JA, Ecker J, Modali RV, Ullrich S: p53 muations, ras muation, and p53-heat shock 70 protein complexes in human lung carcinoma cell lines. Cancer Res 1991; 51: 4090–4096.

    Google Scholar 

  33. Levine AJ, Momand J, Finlay CA: The p53 tumor suppressor gene. Nature 351: 453–455.

  34. Lowe SW, Schmitt EM, Smith SW, Osborne BA, Jacks T: p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature 1993; 362: 847–852.

    Article  PubMed  CAS  Google Scholar 

  35. Lowe SW, Ruley HE, Jacks T, Housman DE: p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 1993; 74: 957–967.

    Article  PubMed  CAS  Google Scholar 

  36. Lutzger SG, Levine AJ: A functionally inactive p53 protein in teratocarcinoma cells is activated by either DANN damage or cellular differentiation. Nature Med 1996; 2: 804–810.

    Article  Google Scholar 

  37. Merritt AJ, Potten CS, Kemp CJ, Hickman JA, Balmain A, Lane DP, Hall PA: The role of p53 in spontanous and radiation-induced apoptosis in the gastrointestinal tract of normal and p53-deficient mice. Cancer Res 1994; 54: 614–617.

    PubMed  CAS  Google Scholar 

  38. Miller WH, Dmitrovsky E: Oncogenes in clinical oncology. Curr Opin Oncol 1991; 3: 65–69.

    Article  PubMed  Google Scholar 

  39. Milner J: DNA damage, p53 and anticancer therapies. Nature Med 1995; 1: 879–880.

    Article  PubMed  CAS  Google Scholar 

  40. Nelson WG, Kastan MB: DNA strand breaks: the DNA template alterations that trigger p53-dependent DNA damage response pathways. Mol Cell Biol 1994; 14: 1815–1823.

    PubMed  CAS  Google Scholar 

  41. Niskanen E, Blomqvist C, Franssila K, Hietanen P, Wasenius VM: Predictive value of c-erbB-2, p53, cathepsin-D, and histology of the primary tumor in metastatic breast cancer. Brit J Oncol 1997; 76: 917–922.

    CAS  Google Scholar 

  42. Rosell R, Gomez-Codina J, Camps C, Maestre J, Padille J, Canto A: A randomized trial comparing preoperative chemotherapy plus surgery with surgery alone in patients with non-small-cell lung cancer. N Engl J Med 1994; 330: 153–158.

    Article  PubMed  CAS  Google Scholar 

  43. Roth JA, Fossella F, Komaki R, Ryan MB, Putnam JB Jr, Lee LS: A randomized trial comparing perioperative chemotherapy and surgery with surgery alone in resectable stage IIIA non-small-cell lung cancer. J Natl Cancer Inst 1994; 86: 673–680.

    Article  PubMed  CAS  Google Scholar 

  44. Rusch VW, Albain KS, Crowley JJ, Rice TW, Lonchyna V, McKenna R, Livingston RB: Surgical resection of stage IIIA and stage IIIB non-small-cell lung cancer after concurrent induction chemotherapy: a Southwest Oncology Group trial. J Thorac Cardiovasc Surg 1993; 105: 97–106.

    PubMed  CAS  Google Scholar 

  45. Rusch V, Klimstra D, Venkatraman E, Oliver J, Martini N, Gralla R: Aberrant p53 expression predicts clinical resistance to cisplatinum-based chemotherapy in locally advanced non-small cell lung cancer. Cancer Res 1995; 55: 5038–5042.

    PubMed  CAS  Google Scholar 

  46. Salgia R, Skarin AT: Molecular abnormalities in lung cancer. J Clin Oncol 1998; 16: 1207–1217.

    PubMed  CAS  Google Scholar 

  47. Sjögren S, Inganäs M, Norberg T, Lindgren A, Nordgren H, Holmberg L, Bergh J: The p53 gene in breast cancer: Prognostic value of complementary DNA sequencing versus immunohistochemistry. J Natl Cancer Inst 1996; 88: 173–82.

    Article  PubMed  Google Scholar 

  48. Thor AD, Moore DH, Edgerton SM, Kawasaki ES, Reihsaus E, Lynch HT, Marcus JN, Schwartz L, Chen LC, Mayall BH, Smith HS: Accumulation of p53 tumor suppressor gene protein: an independent marker of prognosis in breast cancers. J Natl Cancer Inst 1992; 84: 845–855.

    Article  PubMed  CAS  Google Scholar 

  49. Varley JM, McGown G, Thorncroft M, Santibanez-Koref MF, Kelsey AM, Tricker KJ, Evans DGR, Birch JM: Germ-line mutations of TP53 in Li-Fraumeni families: An extended study in 39 families. Cancer Res 1997; 57: 3245–3522.

    PubMed  CAS  Google Scholar 

  50. Wu SG, El-Deiry WS: p53 and chemosensitivity. Nature Med 1996; 2: 255–256.

    PubMed  CAS  Google Scholar 

  51. Wynford-Thomas D: p53 in tumor pathology: can we trust immunohistochemistry? J Pathol 1992; 166: 329–330.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Kandioler-Eckersberger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kandioler-Eckersberger, D., Kappel, S., Ludwig, C. et al. P53 — vom prognostischen zum prädiktiven Marker. Acta Chir. Austriaca 32, 68–72 (2000). https://doi.org/10.1007/BF02949237

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02949237

Schlüsselwörter

Keywords

Navigation