Journal of Computer Science and Technology

, Volume 15, Issue 3, pp 230–240 | Cite as

Extending the relational model to deal with probabilistic data

  • Ma Zongmin Email author
  • Zhang W. J. 
  • Ma W. Y. 


According to the soundness and completeness of information in databases, the expressive form and the semantics of incomplete information are discussed in this paper. On the basis of the discussion, the current studies on incomplete data in relational databases are reviewed. In order to represent stochastic uncertainty in most general sense in the real world, probabilistic data are introduced into relational databases. An extended relational data model is presented to express and manipulate probabilistic data and the operations in relational algebra based on the extended model are defined in this paper.


incomplete information uncertain information extended relational model probabilistic data relational algebra 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Klir G J, Folger T A. Fuzzy Sets, Uncertainty, and Information. Prentice Hall, Englewood Cliffs, N.J., 1988.zbMATHGoogle Scholar
  2. [2]
    Codd E F. Extending the database relational model to capture more meaning.ACM Trans. Database System, 1979, 4(4): 397–434.CrossRefGoogle Scholar
  3. [3]
    Date C J. Relational Database: Selected Writings. Addison-Wesley, Reading, Mass., 1986.zbMATHGoogle Scholar
  4. [4]
    Maier D. The Theory of Relational Databases. Computer Science Press, Rockville, MD, 1983.zbMATHGoogle Scholar
  5. [5]
    Grant J. Partial values in a tabular database model.Information Processing Letters, 1979, 9(2): 97–99.zbMATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    DeMichiel L G. Resolving database incompatibility: An approach to performing relational operations over mismatched domains.IEEE Trans. Knowledge and Data Engineering, 1989, 1(4): 485–493.CrossRefGoogle Scholar
  7. [7]
    Buckles B P, Petry F E. Information-theoretical characterisation of fuzzy relational databases.IEEE Trans. Syst. Man Cybern., 1983, 13(1): 74–77.Google Scholar
  8. [8]
    Buckles B P, Petry F E. Extending the fuzzy database with fuzzy numbers.Inf. Sci. (New York), 1984, 34: 145–155.zbMATHMathSciNetGoogle Scholar
  9. [9]
    Prade H, Testemale C. Generalising database relational algebra for the treatment of incomplete or uncertain information and vague queries.Inf. Sci. (New York), 1984, 34: 115–143.zbMATHMathSciNetGoogle Scholar
  10. [10]
    Zemankova M, Kandel A. Implementing imprecision in information systems.Inf. Sci. (New York), 1985, 37: 107–141.zbMATHGoogle Scholar
  11. [11]
    Raju K V S V N, Majumdar A K. Fuzzy functional dependencies and lossless join decomposition of fuzzy relational database systems.ACM Trans. Database System, 1988, 13(2): 129–166.CrossRefGoogle Scholar
  12. [12]
    Zadeh L A. Fuzzy sets.Information and Control, 1965, 8(3): 338–353.zbMATHCrossRefMathSciNetGoogle Scholar
  13. [13]
    He X G. Data models of the fuzzy relational databases.Chinese Journal of Computers, 1989, 12(2): 120–126.Google Scholar
  14. [14]
    He X G. Semantic distance and fuzzy user’s view in fuzzy databases.Chinese Journal of Computers, 1989, 12(10): 757–764.Google Scholar
  15. [15]
    Cavallo R, Pittarelli M. The theory of probabilistic databases. InProceedings of the 13th VLDB Conference, Brighton, UK, 1987, pp.71–81.Google Scholar
  16. [16]
    Barbara D, Garcia-molina H, Porter D. The management of probabilistic data.IEEE Trans. Knowl. Data Eng., 1992, 4(5): 487–502.CrossRefGoogle Scholar
  17. [17]
    Tseng F S C, Chen A L P, Yang W P. Answering heterogeneous database queries with degrees of uncertainty.Distributed and Parallel Databases: An International Journal, 1993, 1(3): 281–302.CrossRefGoogle Scholar
  18. [18]
    Dey D, Sarkar S A. Probabilistic relational model and algebra.ACM Trans. Database System, 1996, 21(3): 339–369.CrossRefGoogle Scholar

Copyright information

© Science Press, Beijing China and Allerton Press Inc. 2000

Authors and Affiliations

  1. 1.City University of Hong KongKowloonHong Kong, P.R. China
  2. 2.University of SaskatchewanSaskatoonCanada

Personalised recommendations