Skip to main content
Log in

Optical properties of silicon micro and nanocrystals

  • Published:
Microgravity - Science and Technology Aims and scope Submit manuscript

Abstract

Silicon nanocrystal aggregates have been produced in an inert argon gas by a pulsed laser vaporization-condensation technique using the second harmonic of a Nd: YAG laser. In our previous work, it has been shown that materials generated by evaporation-condensation technique present a variety of structures depending on the conditions of production. A theoretical model has been elaborated from a multitude of metallic samples, taking into consideration the effect of the main physical factors on the resulting morphology. This model has been applied to silicon in order to produce silicon nanocrystals with specific structural characteristics. We carried out an investigation of the influence of the structure on the optical properties of silicon nanocrystals. In this report, we present the first results from this investigation. We have explored the inert gas pressure variation effect on the resulting nanocrystallite structures. Investigation under scanning electron microscopy (SEM) has revealed a weblike arrangement whose density gradually increases with the value of pressure. The deposits have been exposed to ambient air for eight months before photoluminescence (PL) measurements. The oxidized nanocrystals exhibited PL and the broad bands seem composed of multiple narrower bands. Silicon nanocrystals are the best candidates for the understanding of the extended red emission (ERE) visible in spectroscopic observations of many astronomical objects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Canham, L. T. «Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers», Appl. Phys. Lett., Vol. 57, p. 1046 (1990).

    Article  Google Scholar 

  2. Ledoux, G., Ehbrecht, M., Guillois, O., Huisken, F., Kohn, B., Laguna, M. A., Nenner, I., Paillard, V., Papoular, R., Porterat, D. andReynaud, C. «Silicon as a candidate carrier for ERE», Astronomy & Astrophysics Letter, Vol. 333, p. L39 (1998).

    Google Scholar 

  3. Witt, A. N., Gordon, K. D. andFurton, D. G. «Silicon nanoparticles: source of extended red emission?», The Astrophysical J., Vol. 501, p. L111 (1998).

    Article  Google Scholar 

  4. Ehbrecht, M., Huisken, F., Rohmand, F., Smirnov, V. V., Stelmarh, O. M. andHuisken, F. «CO2-laser-driven production of carbon clusters and fullerenes from the gas phase», Chem. Phys. Lett., Vol. 214, p. 34 (1993).

    Article  Google Scholar 

  5. Schuppler, S., Friedman, S. L., Marcus, M. A., Adler, D. L. andXie, Y.-H. «Size, shape, and composition of luminescent species in oxidized Si nanocristals and H -passivated porous Si», Phys. Rev. B, Vol. 52, p. 4910 (1995).

    Article  Google Scholar 

  6. Chen, H.S., Chiu, J.-J. andPerng, T.-P. «On the photoluminescence of Si nanoparticles», Mater. Phys. Mech., Vol. 4, p. 62 (2001).

    Google Scholar 

  7. Morisaki, H., Ping, F. W., Ono, H. andYazawa, K. «Above-band-gap photoluminescence from Si fine particles with oxide shell», J. Appl. Phys., Vol. 70, p. 1869 (1991).

    Article  Google Scholar 

  8. Takagi, H., Ogawa, H., Yamazaki, Y., Ishizaki, A. andNakagiri, T. «Quantum size effects on [photoluminescence in ultrafine Si particles», Appl. Phys. Lett., Vol. 56, p. 2379 (1990).

    Article  Google Scholar 

  9. Werwa, E., Seraphin, A. A., Chiu, L. A., Zhou, C. andKolenbrander, D. «Synthesis and processing of silicon nanocrystallites using a pulsed laser ablation supersonic expansion method», Appl. Phys. Lett., Vol. 64, p. 1821 (1994).

    Article  Google Scholar 

  10. Lowndes, D. H., Rouleau, C. M., Thundat, T., Duscher, G., Kenik, E. A. andPennycook, S. J. «Silicon and zinc telluride nanoparticles synthesized by pulsed laser ablation: size distributions and nanoscale structure», Appl. S. Sci., Vol. 127–129, p. 355 (1998).

    Article  Google Scholar 

  11. Yamada, Y., Orii, T., Umezu, I., Takeyama, S. andYoshida, T. «Optical properties of silicon nanocristallites prepared by excimer laser ablation in inert gas», Jpm. J. Appl. Phys., Vol. 35, p. 1361 (1996).

    Article  Google Scholar 

  12. Patrone, L., Nelson, D., Safarov, V. I., Sentis, M., Marine, W. andGiorgio, S. «Photoluminescence of silicon nanoclusters with reduced size dispersion produced by laser ablation», J. Appl. Phys., Vol. 87, p. 3829 (2000).

    Article  Google Scholar 

  13. Makimura, T., Kunii, Y. andMurakami, K. «Light emission from nanometer-sized silicon particles fabricated by the laser ablation method», Jpn. J. Appl. Phys., Vol. 35, p. 4780 (1996).

    Article  Google Scholar 

  14. Kabashin, A. V., Meunier, M. andLeonelli, R. «Photoluminescence characterization of Si-based nanostructured films produced by pulsed laser ablation», J. Vac. Sci. Technol. B, Vol. 19, p. 2217 (2001).

    Article  Google Scholar 

  15. Geohegan, D. B., Puretzky, A. A., Duscher, G. andPennycook, J. «Photoluminescence from gas-suspended SiOx nanoparticles synthesized by laser ablation», Appl. Phys. Lett., Vol. 19, p. 2217 (2001).

    Google Scholar 

  16. Li, S., Silvers, J. andEl-Shall, M. S. «Surface oxidation and luminescence properties of weblike agglomeration of silicon nanocrystals produced by a laser vaporization-controlled condensation technique», J. Phys. Chem. B, Vol. 101, p. 1794 (1997).

    Article  Google Scholar 

  17. Slobodrian, R.J. «Fractal Aggregates», Physics in Canada, Vol. 51, p. 245 (1995), and refs. Therein

    Google Scholar 

  18. Deladurantaye, P., Rioux, C., Slobodrian, R. J., Effect of Gravity on the Growth of Fractal Agregates, Chaos, Solitons & Fractals, Vol. 8, 1693–1708 (1997).

    Article  Google Scholar 

  19. Kabashin, A. V., Sylvestre, J.-P., Patskovsky, S. andMeunier, M. «Correlation between photoluminescence properties and morphology of laser-ablated Si/SiOx nanostructured films», J. Appl. Phys., Vol 91, p. 3248 (2002).

    Article  Google Scholar 

  20. Carlisle, J. A., Dongol, M., Germanenko, I.N., Pithawalla, Y. B. andEl-Shall, M. S. «Evidence for change in the electronic and photoluminescence properties of surface-oxidized silicon nanocrystals induced by shrinking the size of the silicon core», Chem. Phys. Lett., Vol. 326, p. 335 (2000).

    Article  Google Scholar 

  21. Ledoux, G., Guillois, O., Huisken, F., Kohn, B., Porterat, D. andReynaud, C. «Crystalline silicon nanoparticles as carriers for the Extended Red Emission», Astronomy & Astrophysics, Vol. 377, p. 707 (2001).

    Article  Google Scholar 

  22. Ledoux, G., Guillois, O., Reynaud, C., Huisken, F., Kohn, B. andPaillard, V. «Photoluminescence of silicon nanocrystallites: an astronomical application», Materials Science & Engineering B, Vol. 69-70, p. 350 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boisjoli, A., Leclerc, J.C., Piché, M. et al. Optical properties of silicon micro and nanocrystals. Microgravity sci. Technol. 16, 26–30 (2005). https://doi.org/10.1007/BF02945940

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02945940

Keywords

Navigation