Skip to main content
Log in

Studies on droplet-turbulence interactions

  • Published:
KSME Journal Aims and scope Submit manuscript

Abstract

The present study focuses on numerical modeling for droplet dispersion by turbulence and turbulence modulation by droplets. To account for the dense spray effects, modulation models, a droplet collision model, and the Reitz’s wave instability breakup model are incorporated into a state-of-the-art multiphase all-speed transient flow solution procedure. A parcel probability density function(PDF) approach is implemented to improve the efficiency in droplet dispersion calculations. The numerical results indicate that the present parcel PDF model has the capability to realistically represent turbulent dispersion in dilute and dense sprays with improved efficiency over the delta function stochastic separated flow(SSF) model. Comparative performance of the existing turbulence modulation models are discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amsden, A. A., O’Rouke, P. J. and Butler, T. D., 1989, “KIVA-II: A Computer Program for Chemically Reactive Flows with Sprays,” LA-11560-MS, Los Alamos National Lab.

  • Chao, B. T., 1962, “Turbulent Transport Behavior of Small Particles in Dilute Suspension,”Osterr. Ing. Arch., Vol. 18, pp. 7–21.

    Google Scholar 

  • Chen, C. P. and Wood, P. E., 1985. “Turbulence Closure Model for Dilute Gas-Particle Flows,”Can. J. Chem. Engng, Vol. 63, pp. 349–360.

    Article  Google Scholar 

  • Crowe, C. T., Sharma, M. P. and Stock, D. E., 1977, “The Particle Source in Cell Method for Gas-Droplet Flows,”J. Fluid Eng., Vol. 99, pp. 325–332.

    Google Scholar 

  • Chen, C. P., Shang, H. M. and Jiang, Y., 1992, “A Novel Gas-Droplet Numerical Method for Spray Combustion,”Int. J. Numer. Meth. Fluids, Vol. 15, pp. 233–245.

    Article  MATH  Google Scholar 

  • Chen, C. P., Jiang, Y., Kim, Y. M. and Shang, H. M., 1991, “MAST-A Multi-Phase All-Speed Transient Navier-Stokes Code in Generalized Coordinates,”NASA Contract Report, NAG8-092, Dec.

  • El Banhawy, Y. and Whitelaw, J. M., 1980, “Calculation of the Flow Properties of a Confined Kerosene-Spray Flames,”AIAA J., Vol. 18, pp. 1503–1510.

    Article  Google Scholar 

  • Faeth, G. M., 1987, “Mixing. Transport and Combustion in Spray,”Prog. Energy Comb. Sci., Vol. 13, pp. 293–345.

    Article  Google Scholar 

  • Fashola, A. and Chen, C. P., 1990, “Modeling of Confined Turbulent Fluid-Particle Flows Using Eulerian and Lagrangian Schemes,”Int. J. Heat and Mass Transfer, Vol. 33, pp. 691–700.

    Article  Google Scholar 

  • Kim, Y. M., Shang, H. M., Chen, C. P., Ziebarth, J. P. and Wang, T. S., 1992, “Numerical Studies of Dilute and Dense Spray Characteristics,”30th Aerospace Science Meeting, Reno, NV.AIAA-92-0225.

  • Kim, Y. M., Shang, H. M., Chen, C. P. and Chen, Y. S., 1994a, “Prediction of Fast Transient Spray-Combusting Flows,”Numerical Heat Transfer, Part A. Vol. 25, pp. 21–42.

    Article  Google Scholar 

  • Kim, Y. M., Shang, H. M., Chen, C. P. and Wang, T. S., 1994b, “Numerical Studies on Droplet Breakup Models,”J. Propulsion and Power, Accepted for Publication.

  • Litchford, R. J. and Jeng, S. M., 1991, “Efficient Statistical Transport Model for Turbulent Particle Dispersion in Sprays,”AIAA J., Vol. 29, No. 9, pp. 1443–1451.

    Article  Google Scholar 

  • Mostafa, A. A. and Mongia, H. C., 1988. “On the Interaction of Particles and Turbulent Fluid Flow,”Int. J. Heat Mass Transfer, Vol. 31, No. 10, pp. 2063–2073.

    Article  Google Scholar 

  • O’Rourke, P. J., 1981. “Collective Drop Effects on Vaporing Liquid Sprays,” Los Alamos National Laboratory Report LA-9069-T.

  • O’Rourke, P. J., 1989, “Statistical Properties and Numerical Implementation of a Model for Droplet Dispersion in a Turbulent Gas,”J. Comp. Physics, Vol. 83, pp. 345–360.

    Article  MATH  MathSciNet  Google Scholar 

  • Reitz, R. D., 1987, “Modeling Atomization Processes in High-Pressure Vaporizing Sprays,”Atomization and Spray Technology, Vol. 3, pp. 309–337.

    Google Scholar 

  • Reitz, R.D. and Diwaker, R., 1987, “Structure of High Pressure Fuel Sprays,”SAE Paper 870598.

  • Shang, H. M., Kim, Y. M., Chen, C. P. and

  • Wang, T. S., 1992, “Studies on Fuel Spray Characteristics in High-Pressure Environment,”28th Joint Propulsion Conf, AIAA-92-3234.

  • Sirignano, W. A., 1986, “The Formulation of Combustion Models: Resolution Compared to Droplet Spacing,”ASME Journal of Heat Transfer, Vol. 108, pp. 633–639.

    Article  Google Scholar 

  • Shuen, J. S., Solomon, A. S., Zhang, Q. F. and Faeth, G. M., 1985, “Structure of Particle-Laden Jets: Measurements and Predictions,”AIAA J., Vol. 23, pp. 396–404.

    Article  Google Scholar 

  • Snyder, W. H. and Lumley, J. L., 1971, “Some Measurements of Particle Velocity Autocorrelation Functions in a Turbulent Flow,”J. Fluid Mech., Vol. 48, pp. 41–71.

    Article  Google Scholar 

  • Wu, K. J., Santavicca, D. A. and Bracco, F. V., 1984, “LDV Measurements of Drop Velocity in Diesel-type Sprays,”AIAA J., Vol. 22, p. 1263.

    Article  Google Scholar 

  • Yuu, S., Yasukouchi, N., Hirosawa, Y. and Jotaki, T., 1978, “Particle Turbulent Diffusion in a Dust Laden Round Jet,”AIChE Journal, Vol. 24, No. 3, pp. 509–519.

    Article  Google Scholar 

  • Zhou, Q. and Yao, S. C., 1992, “Group Modeling of Impacting Spray Dynamics,”Int. J. Heat Mass Transfer, Vol. 35, No. 1, pp. 121–129.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, Y.M., Shang, H.M. & Chen, C.P. Studies on droplet-turbulence interactions. KSME Journal 8, 364–374 (1994). https://doi.org/10.1007/BF02944709

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02944709

Key Words

Navigation