Skip to main content
Log in

Three-dimensional dynamic model of the knee

  • Published:
KSME International Journal Aims and scope Submit manuscript

Abstract

A three-dimensional dynamic model of the knee was developed to study the interactions between the articulating surfaces of the bones and the geometrical and mechanical properties of the ligaments. The contact-surface geometry of the distal femur, proximal tibia, and patella was modeled by fitting polynomials to each of the eight articular surfaces. Twelve elastic elements were used to describe the function of the ligamentous and capsular structures of the knee. The origin and insertion sites of each model ligament were obtained from cadaveric data reported for an average-size knee. The response of the model to both anterior-posterior drawer and axial rotation suggests that the geometrical and mechanical properties of the model ligaments approximate the behavior of real ligaments in the intact knee. Comparison of the model’s response with experimental data obtained from cadaveric knee extension indicate further that the three-dimensional model reproduces the response of the real knee during movement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmed, A. M., Hyder, A., Burke, D. L., and Chan, K. H., 1987, “In-vitro Ligament Tension Pattern in the Flexed Knee in Passive Loading,”J. Orthop. Res., Vol. 5, pp. 217–230.

    Article  Google Scholar 

  • Ahmed, A. M., Burke, D. L., and Yu, A., 1983, “In-vitro Measurement of Static Pressure Distribution in Synovial Joints-part II: Retropatellar Surface,”J. Biomech. Engng., Vol. 105, pp. 226–236.

    Google Scholar 

  • Andriacchi, T. P., Mikosz, R. P., Hampton, S. J., and Galante, J. O., 1983, “Model Studies of the Stiffness Characteristics of the Human Knee Joint,”J. Biomechanics, Vol. 16, pp. 23–29.

    Article  Google Scholar 

  • Blankevoort, L., Kuiper, J. H., Huikes, R., Grootenber, H. J., 1991, “Articular Contact in a Three-Dimensional Model of the Knee,”J. of Biomechanics, Vol. 24, pp. 1019–1031.

    Article  Google Scholar 

  • Blankevoort, L., Huikes, R., and de Lange, A., 1988, “The Envelop of Passive Knee Joint Motion,”J. of Biomechanics, Vol. 24, pp. 1019–1031.

    Article  Google Scholar 

  • Buff, H. U., Jones, L. C., and Hungerford, D. S., 1988, “Experimental Determination of Force Transmitted Through the Patello-Femoral Joint,”J. Biomechanics, Vol. 21, pp. 17–23.

    Article  Google Scholar 

  • Butler, D. L., Kay, M. D., and Stouffer, D. C., 1986, “Comparison of Material Properties in Fascicle-Bone Units From Human Patellar Tendo and Knee Ligaments,”J. Biomechanics, Vol. 19, pp. 425–432.

    Article  Google Scholar 

  • Butler, D. L., Noyes, F. R., Grood, E. S., 1980, “Ligamentous Restraints to Anterior-Posterior Drawer in the Human Knee,”J. Bone Jt. Surg., Vol. 62-A, pp. 259–270.

    Google Scholar 

  • Dowson, D. and Jin, Z., 1990, “The Influence of Elastic Deformation Upon Film Thickness in Lubricated Bearings With Low Elastic Modulus Coatings,” Mechanics of Coatings, Tribology series 17. Elsevier Science Publishing Co. Proceedings of the 16th Leeds-Lyon symposium on tribology. 5th–8th Sept. 1989. (eds.) In Dowson. D. et al. pp. 263–269.

  • Dowson, D. and Taylor, C. M., 1967, “Elastohydrostatic Lubrication of Circular Plate Thrust Bearings,”J. Lubrication Technology, ASME, pp. 244–237.

  • Ellis, M. I., Seedom, B. B., Wright, V., and Dawson, C. E., 1980, “An Evaluation of the Ratio Between the Tensions Along the Quadriceps Tendon and the Patella Ligament.”Engng. Med., Vol. 9, pp. 189–194.

    Article  Google Scholar 

  • Essinger, J. R., Leyvraz, P. F., Heegard, J. H., Robertson, D. D., 1989, “A Mathematical model for the Evaluation of the Behavior During Flexion of Condylar-Type Knee Prothesis,”J. of Biomechanics, Vol. 22, pp. 1229–1241.

    Article  Google Scholar 

  • Foley, J. D. and van Dam A., 1982, “Fundamentals of Interactive Computer Graphics”, Addison-Wesley Pub.

  • Fukubayashi, T., Torzilli, P. A., Sherman, M. F., and Warren R. F., 1982, “An in Vitro Biomechanical Evaluation of Anterior-Posterior Motion of the Knee,”J. Bone Jt. Surg., Vol. 64-A, pp. 258–264.

    Google Scholar 

  • Garg, A. and Walker, P. S., 1990, “Prediction of Total Knee Motion Using a Three-Dimensional Computer-Graphic Model,”J. Biomechanics, Vol. 23, pp45–50.

    Article  Google Scholar 

  • Girgis, F. G., Marshall, J. L., and AlMonajem, A. R. S., 1975, “The Cruciate Ligaments of the Knee Joint,”Clin. Orthop. Scan., Vol. 51, pp. 136–144.

    Google Scholar 

  • Hayes, W. C. and Bodine, A. J., 1978, “Flow-Independent Viscoelastic Properties of Articular Cartilage,”J. Biomechanics, Vol. 11, pp. 407–419.

    Article  Google Scholar 

  • Heegard, J., Leyvraz, P. F., Curnier, A., Rakotomanana, L. and Huiskes, R., 1995, “The Biomechanics of the Human Patella During Passive Knee Flexion,”J. Biomechanics, Vol. 28, pp. 1265–1279.

    Article  Google Scholar 

  • Hefzy, M. S. and Yang, H., 1993, “A Three-Dimensional Anatomical Model of the Human Patellofemoral Joint for the Determination of Patellofemoral Motions and Contact Characteristics,”J. Biomedical Engng, Vol. 15, pp. 289–302.

    Article  Google Scholar 

  • Hirokawa, S., 1991, “Three Dimensional Mathematical Model Analysis of the Patellofemoral Joint,”J. Biomechanics, Vol. 24, pp. 659–671.

    Article  Google Scholar 

  • Hori, R. Y. and Mockros, L. F., 1976, “Indention Tests of Human Articular Cartilage,”J. Appl. Physiol., Vol. 31, pp. 562–568.

    Google Scholar 

  • Johnson, K. L., 1985, Contact Mechanics. Cambridge University Press. Chapter 4 and 5. pp. 85–152.

  • Kim, S., 1998, “In vitro Measurement of the Human Knee Joint Motion During Quadriceps Leg Raising,” KSME International Journal, Vol. 12, No. 4, pp. 624–641.

    Google Scholar 

  • Kim, S., 1996, “A three-dimensional Dynamic Musculoskeletal Model of the Human Knee Joint,” Ph. D. Dissertation, Mechanical Engineering Dept. The University of Texas at Austin, TX, U. S. A.

    Google Scholar 

  • Koh, T. J., Grabiner, M. D., and De Swart, R. J., 1992, “In vivo Tracking of the Human Patella,”J. Biomechanics, Vol. 25, pp. 637–643.

    Article  Google Scholar 

  • Kurosawa, H., Walker, P. S., Abe, S., Garg, A., and Hunter, T., 1985, “Geometry and Motion of the Knee for Implant and Orthotic Design,”J. Biomechanics, Vol. 18, pp. 487–499.

    Article  Google Scholar 

  • Mak, A. F., 1986, “The Apparent Viscoealstic Behavior of Articular Cartilage: the Contributions from the Intrinsic Matrix Viscoelasticity and Interstitial Fluid Flow,”J. Biomech. Engng., Vol. 108, pp. 123–130.

    Article  Google Scholar 

  • Markolf, K. L., Gorek, J. F., Kabo, M. et al., 1990, “Direct Measurement of Resultant Forces in the Anterior Cruciate Ligament,”J. of Bone Jt. Surg., Vol. 72-A, pp. 557–567.

    Google Scholar 

  • Markolf, K. L., Bargar, W. L., Shoemaker, S. C. et al., 1981, “The Role of Joint Load in Knee Stability,”J. Bone Jt. Surg., Vol. 63-A, pp. 570–585.

    Google Scholar 

  • Markolf, K. L., Mensch, J. S., Amstutz, H. C. et al., 1976, “Stiffness and Laxity of the Knee: The Contributions of the Supporting Structures,”J Bone Jt. Surg., Vol. 58-A, pp. 583–593.

    Google Scholar 

  • Nielsen, S., Ovesen, J. and Andersen, K., 1984, “Rotary Instability of Cadaver Knees After Transection of Collateral Ligaments and Capsule,”Arch. Orthop. Traum. Surg., Vol. 103, pp. 165–169.

    Article  Google Scholar 

  • Nisell, R., 1985, “Mechanics of the knee,”Acta Orthop. Scand. Supplementum 216, Vol. 56, pp. 1–42.

    Google Scholar 

  • Norwood, L. A. and Cross, M. J., 1977, “The Intercondylar Shelf and the Anterior Cruciate Ligament,”Am. J. Sports Med., Vol. 5, pp. 171–176.

    Article  Google Scholar 

  • O’Connor, J. J., Biden, E., Bradley, J., Fitzpatrick, D., Young, S., Kershaw, C., Daniel, D., and Goodfellow, J., 1990, “The Muscle-Stabilized Knee,” In Daniel, D., Akeson, W., and O’Connor, J. (eds.): Knee Ligament: Structure, Function, and Repair. Raven Press, New York, pp. 239–277.

    Google Scholar 

  • Pizali, R. L., Seering, W., Nagel, D. A. and Schurman, D. J., 1980, “The Function of the Primary Ligaments of the Knee in Anterior-Posterior and Medial-Lateral Motions,”J. Biomechanics, Vol. 13, pp. 777–784.

    Article  Google Scholar 

  • Reicher, M. A., 1993, “An Atlas of Normal Multiplanar Anatomy of the Knee Joint,” In Mink, J. H., Reicher, M. A., Crues, J. V., and Deutsch, A. L. (eds.): MRI of the knee, Raven Press, New York, pp. 51–90.

    Google Scholar 

  • Reuben, J. D., Rovick, J. S., Schrager, R. J., Walker, P. S., and Boland, A. L., 1989, “Three-dimensional Dynamic Motion Analysis of the Anterior Cruciate Ligament Deficient Knee Joint,”Amer. J. Sports Med., Vol. 17, pp. 463–471.

    Article  Google Scholar 

  • Shoemaker, S. C., and Markolf, K. L., 1985, “Effects of Joint Load on the Stiffness and Laxity of Ligament-Deficient Knees,”J. Bone Jt. Surg., Vol. 67-A, pp. 136–146.

    Google Scholar 

  • Smidt G. L., 1973, “Biomechanical Analysis of Knee Flexion and Extension,”J. of Biomechanics, Vol. 6, pp. 79–92.

    Article  Google Scholar 

  • Symbolic Dynamics Inc., 1992, SD/Fast User’s Manual, Sunnyvale, California, U. S. A.

  • Tumer S. T. and Engin A. E. (1993). Three-body Segment Dynamic Model of the Human Knee,J. Biomech. Engng. 115: 357–365.

    Article  Google Scholar 

  • van Eijden, T. M., Kouwenhoven, E., Verburg, J., and Weijs, W. A., 1986, “A Mathematical Model of the Patellofemoral Joint,”J. Biomechanics, Vol. 19, pp. 219–229.

    Article  Google Scholar 

  • Wascher, D. C., Markolf, K. L., Shapiro, M. S., and Finerman, G. A., 1993, “Direct in Vitro Measurement of Forces in the Cruciate Ligaments. Part I: The Effect of Multiplane Loading in the Intact Knee,”J. Bone Jt. Surg., Vol. 75-A, pp. 377–386.

    Google Scholar 

  • Wu, G. and Cavanagh, P. R., 1995, “ISB Recommendations for Standardization in the Reporting of Kinematic Data,”J. Biomechanics, Vol. 28, pp. 1257–1261.

    Article  Google Scholar 

  • Yamaguchi, G. T. and Zajac, F. E., 1989, “A Planar Model of the Knee Joint to Characterize the Knee Extensor Mechanism,”J. Biomechanics, Vol. 22, pp. 1–10.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, S. Three-dimensional dynamic model of the knee. KSME International Journal 12, 1041–1063 (1998). https://doi.org/10.1007/BF02942578

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02942578

Key Words

Navigation