Skip to main content
Log in

Zeta dimension formula for picard modular cusp forms of neat natural congruence subgroups

  • Published:
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg Aims and scope Submit manuscript

Abstract

Let\(\Gamma _K = \mathbb{U}((2,1),\mathfrak{D}_K )\) be the full Picard modular group of the imaginary quadratic number fieldK. For all natural congruence subgroups Γk (m), m ≥ 3, acting freely on the two-dimensional complex unit ball, we prove an explicit polynomial formula for the dimensions of spaces of cusp forms of weightn ≥ 2. The coefficients of these polynomials in the natural variablesm, n are expressed by higher third and first Bernoulli numbers of the Dirichlet character χk of K and by values of Euler factors of the Riemann Zeta function and such factors of theL-series of χkat 2 or 3, respectively. The proof is based on detailed knowledge about classification of Picard modular surfaces. It combines algebraic geometric methods (Riemann-Roch, Vanishing- and Proportionality Theorem, curvature, structure of algebraic groups) with modern and classical number theoretic ones (representation densities, Tamagawa measure, strong approximation, functional equation forL-series).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. L. Baily andA. BOREL, Compactiflcation of arithmetic quotients of bounded symmetric domains.Ann. Math. 84 (1966), 442–528.

    Article  MathSciNet  Google Scholar 

  2. G. Barthel,T. Hoefer andF. Hirzebruch,Geradenkonfigurationen und algebraische Flächen. Asp. Math. D4, Vieweg, 1987.

  3. S. I. Borevich andI. R. Shafarevich,Number theory. Nauka, 1985 (russ.).

  4. H. Braun, Zur Theorie der hermiteschen Formen.Abh. Sem. d. Hanseschen Univ. Hamburg 14 (1941), 61–150.

    Article  MathSciNet  Google Scholar 

  5. J. W. S. Cassels andA. Froehlich (ed.),Algebraic number theory. Acad. Press, 1967.

  6. J.-M. Feustel,Über die Spitzen von Modulflächen zur zweidimensionalen komplexen Einheitskugel. Prepr. 13/79, Akad. Wiss. DDR, ZIMM, 1979.

    Google Scholar 

  7. —,Spiegelungs- und Spitzenkontributionen zum arithmetischen Geschlecht Picardscher Modulflaechen. Thesis, Akad. Wiss. DDR, ZIMM, 1980.

    Google Scholar 

  8. S. Helgason,Differential geometry and symmetric spaces. Acad. Press, 1962.

  9. J. C. Hemperly, The parabolic contribution to the number of independent automorphic forms on a certain bounded domain.Amer. Journ. Math. 94 (1972), 1078–1100.

    Article  MATH  MathSciNet  Google Scholar 

  10. R.-P. Holzapfel, A class of minimal surfaces in the unknown region of surface geography.Math. Nachr. 98 (1980), 211–233.

    Article  MATH  MathSciNet  Google Scholar 

  11. -,Volumes of fundamental domains of Picard modular groups. Proc. Worksh. Arithm. of Complex Manifolds, SLN Math.1399, Springer, 1988.

  12. —,Ball and surface arithmetics. Asp. Math., Vieweg, 1998.

    Google Scholar 

  13. K. Ireland andM. Rosen,A classical introduction to modern number theory. Grad. Texts in Math.84, Springer, 1982.

  14. R. Jacobowitz, Hermitian forms over local fields.Am. Journ. Math. 84 (1962), 441–465.

    Article  MATH  MathSciNet  Google Scholar 

  15. M. Kneser,Semisimple algebraic groups, Ch. X in [5].

  16. S. Kobayashi andK.Nomizu,Foundation of differential geometry. Itersci. Tracts Pure and Appl. Math. 15, vol. II, J. Wiley and Sons, 1969.

  17. R. E. Kottwitz, Tamagawa numbers.Ann.Math. 127 (1988), 629–646.

    Article  MathSciNet  Google Scholar 

  18. S. Lang,Introduction to modular forms, Springer, 1976.

  19. D. Mumford, Pathologies III.Amer. J. Math. 79 (1967), 94–104.

    Article  MathSciNet  Google Scholar 

  20. —, Hirzebruch’s proportionality theorem in the non-compact case.Inv. math. 42 (1977), 239–272.

    Article  MATH  MathSciNet  Google Scholar 

  21. A. Neron,Modeles minimaux des varietes abeliennes sur les corps locaux et globaux. Publ. Math. IHES24, 1965.

  22. Platonov,The problem of strong approximation and the Kneser-Tits conjecture for algebraic groups. Izv. Akad. Nauk SSSR, Ser. Mat.33 (6), 1969.

  23. J.-P. Serre,Cours d’arithmétique. Presses Univ. de France, 1970.

    Google Scholar 

  24. R. O. Wells,Differential analysis on complex manifolds. Prentice-Hall, 1973.

  25. Th. Zink, Über die Spitzen einiger arithmetischer Untergruppen unitärer Gruppen.Math. Nachr. 79 (1979), 315–320.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. -P. Holzapfel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holzapfel, R.P. Zeta dimension formula for picard modular cusp forms of neat natural congruence subgroups. Abh.Math.Semin.Univ.Hambg. 68, 169–192 (1998). https://doi.org/10.1007/BF02942561

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02942561

Keywords

Navigation