Agro-industrial uses of glycinebetaine

Abstract

In addition to sugar, several different compounds are presently separated from beet molasses and juices Nowadays, some of these products have proved to be economically even more important to beet sugar factories than the original product, sugar. One of these compounds is glycinebetaine (N, N’, N”-trimethylglycine, GB), an amino acid derivative accumulated in many microbes and plant species grown under stress, but also in humans. Especially halophytes belonging to families Amaranthaceae, Asteraceae Chenopodiaceae, Convolvulaceae, Graminaceae, Malvaceae, Poaceac and Portulaceae synthesize and accumulate GB. GB is assumed to have several adaptive effects on drought and salt stressed plants according to studies mostly based on research work established with cell cultures, bacteria, or isolated chloroplasts. The known role of GB is to maintain water content in animal and plant cells by lowering solute potential under osmotic stress, i.e. to act in osmotic adjustment. This has offered a wide field for use of GB in industry and agriculture for various purposes.

This is a preview of subscription content, log in to check access.

References

  1. Agboma, P., Jones, M.G.K., Pcltonen-Sainio, P., Rita, H. and Pehu, E. (1997a). Exogenous glycinebetaine enhances grain yield of maize, sorghum and wheat grown under two supplementary watering regime.J. Agron. and Crop Sci.,178: 29–37.

    CAS  Article  Google Scholar 

  2. Agboma, P., Sinclair, T.R., Peltonen-Sainio, P., Jokinen, K. and Pehu, E. (1997b). An evaluation of the effect of foliar application of glycinebetaine on the growth and yield of soybean: timing of application, watering regimes and cultivars.Field Crops Res.,54: 51–64.

    Article  Google Scholar 

  3. Arakawa, K., Mizuno, K., Kishitani, S. and Takabe, T. (1992). Immunological studies of betaine aldehyde dehydrogenase in barley.Plant Cell Phys.,33: 833–840.

    CAS  Google Scholar 

  4. Araya, F., Abarca, O., Zuniga, G.E. andCorcuera, L.J. (1991). Effects of NaCI on glycinebetaine and on aphids in cereal seedlings.Phytochemistry.30: 1793–1795.

    CAS  Article  Google Scholar 

  5. Augustine, P. and McNaughton, J.L. (1996). Effect of betaine on invasion and development of the avian coccidian and growth performance in coccidian-infected chicks. Proceedings of the Maryland Nutrition Conference. March 21–22, pp. 31–36.

  6. Barak, A.J., Beckenhauer, H.C., Junnila, M. and Tuma, D.J. (1993). Dietary betaine promotes generation of hepatic S- adenosylmethionine and protects the liver from ethanol-induced fatty infiltration.Alcoholism: Clinical Exp. Res.,17: 552–555.

    CAS  Article  Google Scholar 

  7. Beiß, U. (1994). Zum Betaingehalt der Zuckerrübe.Zuckerindustrie,119: 112–117.

    Google Scholar 

  8. Bergmann, H. and Eckert, H. (1984). Einfluß von Glycinbetaine auf die Wasserausnutzung von WinterweizenTriticum aestivum L.Biol. Plantanun,26: 384–387.

    CAS  Article  Google Scholar 

  9. Beringer H., Koch K. and Lindhauer M.G. (1986). Sucrose accumulation and potassium potentials in sugar beet at increasing levels of potassium nutrition.Journal of Science of Food and Agriculture.37: 211–218.

    CAS  Article  Google Scholar 

  10. Blunden, G., Jenkins, T. and Liu, Y.W. (1997). Enhanced leaf chlorophyll levels in planta treated with seaweed extract..J. Appl. Phycol.8: 535–543.

    Article  Google Scholar 

  11. Broquisse, R., Weigel, P., Rhodes, D., Yocum, C.F. and Hanson, A.D. (1989). Evidence for ferredoxin-dependent choline mono- oxygenase from spinach chloroplast stroma.Plant Physiol.,90: 322–329.

    Article  Google Scholar 

  12. Clarke, W.C., Virtanen, E., Blackburn, J. and Higgs, D.A. (1994). Effects of a dietary betaine/amino acid derivative on growth and seawater adaptation in yearling Chinook salmon.Aquaculture.121: 137–145.

    CAS  Article  Google Scholar 

  13. Dudman, N.P.B., Wilcken, D.E.L., Wang, J., Lynch, J.F., Macey, D. and Lundberg, P. (1993). Disordered methionine/ homocysteine metabolism in premature vascular disease.Arterioseler. Thromb.,13: 1253–1260.

    CAS  Article  Google Scholar 

  14. Ferket, P.R. (1995). Flushing syndrome in the grow-out stage of commercial turkeys. Proceedings of the Smithkline Beecham Animal Health Pacesetter Seminar January 10th’ 1995 in Orlando, Florida, pp. 1–7.

  15. Finkelstein, .I.D., Martin, J.J. and Harris, B.J. (1988). Methionine metabolism in mammals.J. Biol. Client.,263: 11750–11754.

    CAS  Google Scholar 

  16. Fronticra, M.S., Stabler, S.P., Kolhouse, J.F. and Allen, R.H. (1994). Regulation of methionine metabolism: effect of nitrous oxide and excess methionine.J. Nutr. Biochem.,5: 28–38.

    Article  Google Scholar 

  17. Huang, J., Hirji, R., Adam, L., Rozwadowski, K.L., Hammerlindl, J.K., Keller, W.A. and Selvaraj, G. (2000). Genetic engineering of glycinebetaine production toward enhancing stress tolerance in plants: metabolic limitations.Plant Physiol.122: 747–756.

    CAS  Article  Google Scholar 

  18. Hurme, E.U., Kinnunen, A., Heiniö, R.L., Ahvenainen, R. and Jokinen, K. (1999). The storage life of packed shredded iceberg lettuce dipped in glycine betaine solutions.J. Food Protect,62: 363–367.

    CAS  Article  Google Scholar 

  19. Kawahara, Y., Yoshihara, Y., Ikeda, S., Yoshii, H. and Hirose, Y. (1990). Stimulatory effect of glycinebetaine on L-lysine fermentation.Appl. Microbiol. Biolechnol.34: 87–90.

    CAS  Google Scholar 

  20. Kets, E.P.W. and de Bont, J.A.M. (1994). Protective effect of betaine on survival ofLactobacillus plantarum subjected to drying.FEMS Microbiol. Lett.116: 251–256.

    CAS  Article  Google Scholar 

  21. Gorham J. (1995). Betaines in higher plants - biosynthesis and role in stress metabolism. Aminoacids and Their Derivatives in Higher Plants (ed. Wallgrove, R.M.) University Press, Cambridge, pp. 172–203.

    Google Scholar 

  22. Hanson, A.D., Rivoal, J., Burnet, M. and Rathinasapabathi, B. (1995). Biosynthesis of quaternary ammonium and tertiary sulphonium compounds in response to water deficit. Environment and Plant Metabolism. Flexibility and Acclimation (ed. Smirnoff, N.) BIOS Scientific Publishers Ltd, Oxford, pp. 189–198.

    Google Scholar 

  23. Hanson, A.D. and Grumet, R. (1985). Betaine accumulation: metabolic pathways and genetics. Cellular and Molecular Biology of Plant Stress (eds. Kent, J.L. and Kosuge, T.) Alan R Liss Inc, New York, pp. 71–92.

    Google Scholar 

  24. Hofinger, M., Coumans, M., Ceulemans, E. and Gaspar, T.H. (1976). Assigning a biological role to hypaphorine and lycine (two betaines).Planta Medica,30: 303–309.

    CAS  Article  Google Scholar 

  25. Itai, C. and Paleg, L.G. (1982). Responses of water-stressedHordeum distichuin L. andCucumis sativus to proline and betaine.Plant Sci. Lett.,25: 329–335.

    CAS  Article  Google Scholar 

  26. Mäkelä, P., Jokinen, K., Peltonen-Sainio, P., Pehu, E., Setälä, H., Hinkkanen, R. and Somersalo, S. (1996a). Uptake and translocation of foliarly applied glycinebetaine in crop plants.Plant Sci.,121: 221–230.

    Article  Google Scholar 

  27. Mäkelä, P., Jokinen, K., Kontturi, M., Peltonen-Sainio, P., Pehu, E. and Somersalo, S. (1998a). Foliar application of glycinebetaine - a novel product from sugar beet - as an approach to increase tomato yield.Ind. Crops and Prod.,7: 139–148.

    Article  Google Scholar 

  28. Mäkelä, P., Kleemola, J., Jokinen, K., Mantila, J., Pehu, E. and Peltonen-Sainio, P. (1997). Growth response of pea and summer turnip rape to foliar application of glycinebetaine. Acta Agric. Scand., Sect. B,Soil and Plant Sci.,47: 168–175.

    Google Scholar 

  29. Mäkelä, P., Kontturi, M., Pehu, E. and Somersalo, S. (1999). Photosynthetic response of drought- and salt-stressed tomato and turnip rape plants to foliar-applied glycinebetaine.Phys. Plantarum,105: 45–50.

    Article  Google Scholar 

  30. Mäkelä, P., Kärkkäinen, J. and Somersalo, S. (2000). Effect of glycinebetaine on chloroplast ultrastructure, chlorophyll and protein content, and RuBCO activities in tomato grown under drought or salinity.Biol. Plantarum,43: 471–475.

    Article  Google Scholar 

  31. Mäkelä, P., Mantila, J., Hinkkanen, R., Pehu, E. and Peltonen-Sainio, P. (1996b). Effect of foliar applications of glycinebetaine on strewss tolerance, growth, and yield of spring cereals and summer turnip rape in Finland.J. Agron. and Crop Sci.,176: 223–234.

    Article  Google Scholar 

  32. Mäkelä, P., Munns, R., Colmer, T.D., Condon, A.C. and Pcltonen-Sainio, P. (1998b). Effect of foliar applications of glycinebetaine on slomatal conductance, abscisic acid and solute concentrations of salt and drought stressed tomato.Australian J. Plant Physiol.25: 655–663.

    Article  Google Scholar 

  33. McCuc, K.F. and Hanson, A.D. (1990). Drought and salt tolerance: towards understanding and application.T1BTECH.8: 358–362.

    Article  Google Scholar 

  34. McNeil, S.D., Rhodes, D., Russell, B.L., Nuccio, M.L., Shachar-Hill, Y. and Hanson, A.D. (2000). Metabolic modeling identifies key constraints on an engineered glycine betaine synthesis pathway in tobacco.Plant Physiol.,124: 153–162.

    CAS  Article  Google Scholar 

  35. Papageorgiou, G.C., Fujimura, Y. and Murata, N. (1991). Protection of the oxygenevolving photosystem II complex by glycinebetaine.Biochim. Biophys. Acta,1057: 361–366.

    CAS  Article  Google Scholar 

  36. Papageorgiou, G.C. and Murata, N. (1995). The unusually strong stabilizing effects of glycinebetaine on the structure and function of the oxygen-evolving photosystem II complex.Photosynthesis Res.,44: 243–252.

    CAS  Article  Google Scholar 

  37. Pocard, J.A., Bernard, T. and Le Rudulier, D. (1991). Translocation and metabolism of glycinebetaine in nodulated alfalfa plants subjected to salt stress.Physiol. Plantarum,81: 95–102.

    Article  Google Scholar 

  38. Rajasekaran, L.R.,Kriedemann, P.E., Aspinall, D. and Paleg, L.G. (1997). Physiological significance of proline and glycinebetaine - maintaining photosynthesis during NaCl stress in wheat.Photosynthetica,34: 357–366.

    CAS  Article  Google Scholar 

  39. Rhodes, D. and Hanson, A.D. (1993). Quaternary ammonium and tertiary sulfonium compounds in higher plants.Ann. Rev. Plant Physiol. Plant Mol. Biol.,44: 357–384.

    CAS  Article  Google Scholar 

  40. Rohlfs, E.M., Garner, S.C., Mar, M.H. and Zeisel, S.H. (1993). Glycerophosphocholine and phosphocholine are the major metabolites in rat milk.J. Nutrition,123: 1762–1768.

    CAS  Article  Google Scholar 

  41. Saunderson, C.L. and Mackinlay, J. (1990). Changes in body- weight, composition and hepatic enzyme activities in response to dietary methionine, betaine and choline levels in growing chicks.British J. Nutrition,63: 339–349.

    CAS  Article  Google Scholar 

  42. Whapman, C.A., Blunden, G., Jenkins, T. and Hankins, S.D. (1993). Significance of betaines in the increased chlorophyll content of plants treated with seaweed extract.J. Appl. Phycology,5: 231–234.

    Article  Google Scholar 

  43. Wu, Y., Jenkins, T., Blunden, G., Whapman, C. and Hankins, S.D. (1997). The role of betaines in alkaline extracts ofAscophyllum nodosum in the reduction ofMeloidogyne javunica andM. incognita infestations of tomato plants.Fundam. Appl. Nematol.,20: 99–102.

    Google Scholar 

  44. Wyn Jones, R.G. and Storey, R. (1981). Betaines The Physiology and Biochemistry of Drought Resistance in Plants (eds. Paleg, L.G. and Aspinall, D.), Academic Press, Sydney, pp. 171–204.

    Google Scholar 

  45. Zuniga, G.E., Argandona, V.H. and Corcuera, L..I. (1989). Distribution of glycinebetaine and proline in water stressed and unstressed barley leaves.Phytochemistry,28: 419–420.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Pirjo Mäkelä.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mäkelä, P. Agro-industrial uses of glycinebetaine. Sugar Tech 6, 207–212 (2004). https://doi.org/10.1007/BF02942500

Download citation

Keywords

  • Glycinebetaine
  • crop production
  • sugarbeet molasses