Sugar Tech

, Volume 6, Issue 4, pp 207–212 | Cite as

Agro-industrial uses of glycinebetaine

  • Pirjo MäkeläEmail author
Review Article


In addition to sugar, several different compounds are presently separated from beet molasses and juices Nowadays, some of these products have proved to be economically even more important to beet sugar factories than the original product, sugar. One of these compounds is glycinebetaine (N, N’, N”-trimethylglycine, GB), an amino acid derivative accumulated in many microbes and plant species grown under stress, but also in humans. Especially halophytes belonging to families Amaranthaceae, Asteraceae Chenopodiaceae, Convolvulaceae, Graminaceae, Malvaceae, Poaceac and Portulaceae synthesize and accumulate GB. GB is assumed to have several adaptive effects on drought and salt stressed plants according to studies mostly based on research work established with cell cultures, bacteria, or isolated chloroplasts. The known role of GB is to maintain water content in animal and plant cells by lowering solute potential under osmotic stress, i.e. to act in osmotic adjustment. This has offered a wide field for use of GB in industry and agriculture for various purposes.


Glycinebetaine crop production sugarbeet molasses 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agboma, P., Jones, M.G.K., Pcltonen-Sainio, P., Rita, H. and Pehu, E. (1997a). Exogenous glycinebetaine enhances grain yield of maize, sorghum and wheat grown under two supplementary watering regime.J. Agron. and Crop Sci.,178: 29–37.CrossRefGoogle Scholar
  2. Agboma, P., Sinclair, T.R., Peltonen-Sainio, P., Jokinen, K. and Pehu, E. (1997b). An evaluation of the effect of foliar application of glycinebetaine on the growth and yield of soybean: timing of application, watering regimes and cultivars.Field Crops Res.,54: 51–64.CrossRefGoogle Scholar
  3. Arakawa, K., Mizuno, K., Kishitani, S. and Takabe, T. (1992). Immunological studies of betaine aldehyde dehydrogenase in barley.Plant Cell Phys.,33: 833–840.Google Scholar
  4. Araya, F., Abarca, O., Zuniga, G.E. andCorcuera, L.J. (1991). Effects of NaCI on glycinebetaine and on aphids in cereal seedlings.Phytochemistry.30: 1793–1795.CrossRefGoogle Scholar
  5. Augustine, P. and McNaughton, J.L. (1996). Effect of betaine on invasion and development of the avian coccidian and growth performance in coccidian-infected chicks. Proceedings of the Maryland Nutrition Conference. March 21–22, pp. 31–36.Google Scholar
  6. Barak, A.J., Beckenhauer, H.C., Junnila, M. and Tuma, D.J. (1993). Dietary betaine promotes generation of hepatic S- adenosylmethionine and protects the liver from ethanol-induced fatty infiltration.Alcoholism: Clinical Exp. Res.,17: 552–555.CrossRefGoogle Scholar
  7. Beiß, U. (1994). Zum Betaingehalt der Zuckerrübe.Zuckerindustrie,119: 112–117.Google Scholar
  8. Bergmann, H. and Eckert, H. (1984). Einfluß von Glycinbetaine auf die Wasserausnutzung von WinterweizenTriticum aestivum L.Biol. Plantanun,26: 384–387.CrossRefGoogle Scholar
  9. Beringer H., Koch K. and Lindhauer M.G. (1986). Sucrose accumulation and potassium potentials in sugar beet at increasing levels of potassium nutrition.Journal of Science of Food and Agriculture.37: 211–218.CrossRefGoogle Scholar
  10. Blunden, G., Jenkins, T. and Liu, Y.W. (1997). Enhanced leaf chlorophyll levels in planta treated with seaweed extract..J. Appl. Phycol.8: 535–543.CrossRefGoogle Scholar
  11. Broquisse, R., Weigel, P., Rhodes, D., Yocum, C.F. and Hanson, A.D. (1989). Evidence for ferredoxin-dependent choline mono- oxygenase from spinach chloroplast stroma.Plant Physiol.,90: 322–329.CrossRefGoogle Scholar
  12. Clarke, W.C., Virtanen, E., Blackburn, J. and Higgs, D.A. (1994). Effects of a dietary betaine/amino acid derivative on growth and seawater adaptation in yearling Chinook salmon.Aquaculture.121: 137–145.CrossRefGoogle Scholar
  13. Dudman, N.P.B., Wilcken, D.E.L., Wang, J., Lynch, J.F., Macey, D. and Lundberg, P. (1993). Disordered methionine/ homocysteine metabolism in premature vascular disease.Arterioseler. Thromb.,13: 1253–1260.CrossRefGoogle Scholar
  14. Ferket, P.R. (1995). Flushing syndrome in the grow-out stage of commercial turkeys. Proceedings of the Smithkline Beecham Animal Health Pacesetter Seminar January 10th’ 1995 in Orlando, Florida, pp. 1–7.Google Scholar
  15. Finkelstein, .I.D., Martin, J.J. and Harris, B.J. (1988). Methionine metabolism in mammals.J. Biol. Client.,263: 11750–11754.Google Scholar
  16. Fronticra, M.S., Stabler, S.P., Kolhouse, J.F. and Allen, R.H. (1994). Regulation of methionine metabolism: effect of nitrous oxide and excess methionine.J. Nutr. Biochem.,5: 28–38.CrossRefGoogle Scholar
  17. Huang, J., Hirji, R., Adam, L., Rozwadowski, K.L., Hammerlindl, J.K., Keller, W.A. and Selvaraj, G. (2000). Genetic engineering of glycinebetaine production toward enhancing stress tolerance in plants: metabolic limitations.Plant Physiol.122: 747–756.CrossRefGoogle Scholar
  18. Hurme, E.U., Kinnunen, A., Heiniö, R.L., Ahvenainen, R. and Jokinen, K. (1999). The storage life of packed shredded iceberg lettuce dipped in glycine betaine solutions.J. Food Protect,62: 363–367.CrossRefGoogle Scholar
  19. Kawahara, Y., Yoshihara, Y., Ikeda, S., Yoshii, H. and Hirose, Y. (1990). Stimulatory effect of glycinebetaine on L-lysine fermentation.Appl. Microbiol. Biolechnol.34: 87–90.Google Scholar
  20. Kets, E.P.W. and de Bont, J.A.M. (1994). Protective effect of betaine on survival ofLactobacillus plantarum subjected to drying.FEMS Microbiol. Lett.116: 251–256.CrossRefGoogle Scholar
  21. Gorham J. (1995). Betaines in higher plants - biosynthesis and role in stress metabolism. Aminoacids and Their Derivatives in Higher Plants (ed. Wallgrove, R.M.) University Press, Cambridge, pp. 172–203.Google Scholar
  22. Hanson, A.D., Rivoal, J., Burnet, M. and Rathinasapabathi, B. (1995). Biosynthesis of quaternary ammonium and tertiary sulphonium compounds in response to water deficit. Environment and Plant Metabolism. Flexibility and Acclimation (ed. Smirnoff, N.) BIOS Scientific Publishers Ltd, Oxford, pp. 189–198.Google Scholar
  23. Hanson, A.D. and Grumet, R. (1985). Betaine accumulation: metabolic pathways and genetics. Cellular and Molecular Biology of Plant Stress (eds. Kent, J.L. and Kosuge, T.) Alan R Liss Inc, New York, pp. 71–92.Google Scholar
  24. Hofinger, M., Coumans, M., Ceulemans, E. and Gaspar, T.H. (1976). Assigning a biological role to hypaphorine and lycine (two betaines).Planta Medica,30: 303–309.CrossRefGoogle Scholar
  25. Itai, C. and Paleg, L.G. (1982). Responses of water-stressedHordeum distichuin L. andCucumis sativus to proline and betaine.Plant Sci. Lett.,25: 329–335.CrossRefGoogle Scholar
  26. Mäkelä, P., Jokinen, K., Peltonen-Sainio, P., Pehu, E., Setälä, H., Hinkkanen, R. and Somersalo, S. (1996a). Uptake and translocation of foliarly applied glycinebetaine in crop plants.Plant Sci.,121: 221–230.CrossRefGoogle Scholar
  27. Mäkelä, P., Jokinen, K., Kontturi, M., Peltonen-Sainio, P., Pehu, E. and Somersalo, S. (1998a). Foliar application of glycinebetaine - a novel product from sugar beet - as an approach to increase tomato yield.Ind. Crops and Prod.,7: 139–148.CrossRefGoogle Scholar
  28. Mäkelä, P., Kleemola, J., Jokinen, K., Mantila, J., Pehu, E. and Peltonen-Sainio, P. (1997). Growth response of pea and summer turnip rape to foliar application of glycinebetaine. Acta Agric. Scand., Sect. B,Soil and Plant Sci.,47: 168–175.Google Scholar
  29. Mäkelä, P., Kontturi, M., Pehu, E. and Somersalo, S. (1999). Photosynthetic response of drought- and salt-stressed tomato and turnip rape plants to foliar-applied glycinebetaine.Phys. Plantarum,105: 45–50.CrossRefGoogle Scholar
  30. Mäkelä, P., Kärkkäinen, J. and Somersalo, S. (2000). Effect of glycinebetaine on chloroplast ultrastructure, chlorophyll and protein content, and RuBCO activities in tomato grown under drought or salinity.Biol. Plantarum,43: 471–475.CrossRefGoogle Scholar
  31. Mäkelä, P., Mantila, J., Hinkkanen, R., Pehu, E. and Peltonen-Sainio, P. (1996b). Effect of foliar applications of glycinebetaine on strewss tolerance, growth, and yield of spring cereals and summer turnip rape in Finland.J. Agron. and Crop Sci.,176: 223–234.CrossRefGoogle Scholar
  32. Mäkelä, P., Munns, R., Colmer, T.D., Condon, A.C. and Pcltonen-Sainio, P. (1998b). Effect of foliar applications of glycinebetaine on slomatal conductance, abscisic acid and solute concentrations of salt and drought stressed tomato.Australian J. Plant Physiol.25: 655–663.CrossRefGoogle Scholar
  33. McCuc, K.F. and Hanson, A.D. (1990). Drought and salt tolerance: towards understanding and application.T1BTECH.8: 358–362.CrossRefGoogle Scholar
  34. McNeil, S.D., Rhodes, D., Russell, B.L., Nuccio, M.L., Shachar-Hill, Y. and Hanson, A.D. (2000). Metabolic modeling identifies key constraints on an engineered glycine betaine synthesis pathway in tobacco.Plant Physiol.,124: 153–162.CrossRefGoogle Scholar
  35. Papageorgiou, G.C., Fujimura, Y. and Murata, N. (1991). Protection of the oxygenevolving photosystem II complex by glycinebetaine.Biochim. Biophys. Acta,1057: 361–366.CrossRefGoogle Scholar
  36. Papageorgiou, G.C. and Murata, N. (1995). The unusually strong stabilizing effects of glycinebetaine on the structure and function of the oxygen-evolving photosystem II complex.Photosynthesis Res.,44: 243–252.CrossRefGoogle Scholar
  37. Pocard, J.A., Bernard, T. and Le Rudulier, D. (1991). Translocation and metabolism of glycinebetaine in nodulated alfalfa plants subjected to salt stress.Physiol. Plantarum,81: 95–102.CrossRefGoogle Scholar
  38. Rajasekaran, L.R.,Kriedemann, P.E., Aspinall, D. and Paleg, L.G. (1997). Physiological significance of proline and glycinebetaine - maintaining photosynthesis during NaCl stress in wheat.Photosynthetica,34: 357–366.CrossRefGoogle Scholar
  39. Rhodes, D. and Hanson, A.D. (1993). Quaternary ammonium and tertiary sulfonium compounds in higher plants.Ann. Rev. Plant Physiol. Plant Mol. Biol.,44: 357–384.CrossRefGoogle Scholar
  40. Rohlfs, E.M., Garner, S.C., Mar, M.H. and Zeisel, S.H. (1993). Glycerophosphocholine and phosphocholine are the major metabolites in rat milk.J. Nutrition,123: 1762–1768.CrossRefGoogle Scholar
  41. Saunderson, C.L. and Mackinlay, J. (1990). Changes in body- weight, composition and hepatic enzyme activities in response to dietary methionine, betaine and choline levels in growing chicks.British J. Nutrition,63: 339–349.CrossRefGoogle Scholar
  42. Whapman, C.A., Blunden, G., Jenkins, T. and Hankins, S.D. (1993). Significance of betaines in the increased chlorophyll content of plants treated with seaweed extract.J. Appl. Phycology,5: 231–234.CrossRefGoogle Scholar
  43. Wu, Y., Jenkins, T., Blunden, G., Whapman, C. and Hankins, S.D. (1997). The role of betaines in alkaline extracts ofAscophyllum nodosum in the reduction ofMeloidogyne javunica andM. incognita infestations of tomato plants.Fundam. Appl. Nematol.,20: 99–102.Google Scholar
  44. Wyn Jones, R.G. and Storey, R. (1981). Betaines The Physiology and Biochemistry of Drought Resistance in Plants (eds. Paleg, L.G. and Aspinall, D.), Academic Press, Sydney, pp. 171–204.Google Scholar
  45. Zuniga, G.E., Argandona, V.H. and Corcuera, L..I. (1989). Distribution of glycinebetaine and proline in water stressed and unstressed barley leaves.Phytochemistry,28: 419–420.CrossRefGoogle Scholar

Copyright information

© Society for Sugar Research & Promotion 1999

Authors and Affiliations

  1. 1.Department of Applied BiologyUniversity of HelsinkiFinland

Personalised recommendations