Skip to main content
Log in

Rigorous model for spherical cell-support aggregate

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The activity of immobilized cell-support particle aggregates is influenced by physical and biochemical elements, mass transfer, and physiology. Accordingly, the mathematical model discussed in this study is capable of predicting the steady state and transient concentration profiles of the cell mass and substrate, plus the effects of the substrate and product inhibition in an immobilized cell-support aggregate. The overall mathematical model is comprised of material balance equations for the cell mass, major carbon source, dissolved oxygen, and non-biomass products in a bulk suspension along with a single particle model. A smaller bead size and higher substrate concentration at the surface of the particle, resulted in a higher supply of the substrate into the aggregate and consequently a higher biocatalyst activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gikas, P. and A. G. Livingston (1997) Specific ATP and specific oxygen uptake rate in immobilized cell aggregates: experimental results and theoretical analysis using a structured model of immobilized cell growth.Biotechnol. Bioeng. 55: 660–673.

    Article  CAS  Google Scholar 

  2. Monbouquette, H. G., G. D. Sayles, and D. E. Ollis (1990) Immobilized cell biocatalyst activation and pseudo-steady-state behavior, model and experiment.Biotechnol. Bioeng. 35: 609–629.

    Article  CAS  Google Scholar 

  3. Riley, M. R., F. J. Muzzio, and S. C. Reyes (1997) Effect of oxygen limitations on monoclonal antibody production by immobilized hybridoma cells.Biotechnol. Prog. 13: 301–310.

    Article  CAS  Google Scholar 

  4. Nakasaki, K., T. Murai, and T. Akiyama (1989) Dynamic modeling of an immobilized cell reactor.Appl. Biochem. Bioeng. 22: 279–288.

    CAS  Google Scholar 

  5. Godia, F., C. Casas, and C. Sola (1987) Mathematical modelization of a packed-bed reactor performance with Immobilized yeast for ethanol fermentation.Biotechnol. Bioeng. 30: 836–843.

    Article  CAS  Google Scholar 

  6. Berry, F., S. Savadi, M. Nasri, J. N. Barbotin, and D. Thomas (1988) Effect of growing conditions of recombinantE. coli in carrageenan gel beads upon biomass production and plasmid stability.Biotechnol. Lett. 10: 619–624.

    Article  CAS  Google Scholar 

  7. Sola, C., C. Casas, M. Poch, and A. Serra (1986) Continuous ethanol production by immobilized yeast cells and ethanol recovery by liquid-liquid extraction.Biotechnol. Bioeng Symp. No 17: 519–533.

    CAS  Google Scholar 

  8. du Poet, P. T., P. Dhulster, J. N. Barbotin, and D. Thomas (1986) Plasmid inheritability and biomass production, comparison between free and immobilized cell cultures ofEscherichia coli BZ18(pTG201) without selection pressure.J. Bacteriol. 165: 871–877.

    Google Scholar 

  9. Wang, H., M. Seki, and S. Furusaki (1995) Mathematical model for analysis of mass transfer for immobilized cells in lactic acid fermentation.Biotechnol. Prog. 11: 558–564.

    Article  CAS  Google Scholar 

  10. Tsuchiya, K. and T. Kimura (1980) Growth kineties under adenine limiting conditions of KYA 741, and adenine-requiring strain.Biotechnol. Bioeng. 22: 401–410.

    Article  CAS  Google Scholar 

  11. Konak, A. R. (1975) An equation for batch bacterial growth.Biotechnol. Bioeng. 17: 271–272.

    Article  Google Scholar 

  12. Tayeb, Y. J. and H. C. Lim (1986) Optimal glucose feed rate for fed-batch penicillin fermentation, an efficient algorithm and computational results.Ann. N. Y. Acad. Sci. 469: 382–403.

    Article  CAS  Google Scholar 

  13. Chresand, T. J., B. E. Dale, and S. L. Hanson (1988) A stirred bath technique for diffusivity measurement in cell matrices.Biotechnol. Bioeng. 32: 1029–1036.

    Article  CAS  Google Scholar 

  14. Zhao, Y. and G. B. DeLancey (2000) A diffusion model and optimal cell loading for immobilized cell biocatalysts.Biotechnol. Bioeng. 69: 639–647.

    Article  CAS  Google Scholar 

  15. Johnson, M. J. (1967) Aerobic microbial growth at low oxygen concentration.J. Bacteriol. 94: 101–108.

    CAS  Google Scholar 

  16. Chen, T.-L. and A. E. Humphrey (1988) Estimation of critical particle diameters for optimal respiration of gel entrapped and/or pelletized microbial cells.Biotechnol. Lett. 10: 699–702.

    Article  Google Scholar 

  17. Khang, Y. H., H. Shankar, and F. Senatore (1988) Modelling the effect of oxygen mass transfer on β-lactam antibiotics production by immobilizedcephalosporium acremonium.Biotechnol. Lett. 10: 861–866.

    Article  CAS  Google Scholar 

  18. Bajpai, R. K. and M. Reuss (1980) A mechanistic model for penicillin production.J. Chem. Tech. Biotechnol. 30: 332–344.

    CAS  Google Scholar 

  19. Davis, M. E. and L. J. Watson (1985) Analysis of a diffusion-limited hollow fiber reactor for the measurement of effective substrate diffusivities.Biotechnol. Bioeng. 27: 182–186.

    Article  CAS  Google Scholar 

  20. McGinnis, P.H. Jr (1965) Numerical solution of boundary value nonlinear ordinary differential equations.Chem. Eng. Prog. Symp. Ser. 61: 2–7.

    Google Scholar 

  21. Wen, C. Y (1968) Noncatalytic heterogeneous solid fluid reaction models.Ind. Eng. Chem. 60: 34–54.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung-Hyeon Moon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moon, SH., Lee, K.B. & Paruekar, S.J. Rigorous model for spherical cell-support aggregate. Biotechnol. Bioprocess Eng. 6, 42–50 (2001). https://doi.org/10.1007/BF02942249

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02942249

Keywords

Navigation