Skip to main content
Log in

Characterization of the α-mannosidase gene family in filamentous fungi: N-glycan remodelling for the development of eukaryotic expression systems

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Although filamentous fungi are used extensively for protein expression, their use for the production of heterologous glycoproteins is constrained by the types of N-glycan structures produced by filamentous fungi as compared to those naturally found on the glycoproteins. Attempts are underway to engineer the N-glycan synthetic pathways in filamentous fungi in order to produce fungal expression strains which can produce heterologous glycoproteins carrying specific N-glycan structures. To fully realize this goal, a detailed understanding of the genetic components of this pathway in filamentous fungi is required. In this review, we discuss the characterization of the α-mannosidase gene family in filamentous fungi and its implications for the elucidation of the N-glycan synthetic pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Maras, M., I. van Die, R. Contreras, and C. A. M. J. J. van den Hondel (1999) Filamentous fungi as production organisms for glycoproteins of bio-medical interest.Glycoconj. J. 16: 99–107.

    Article  CAS  Google Scholar 

  2. Archer, D. B. and J. E. Peberdy (1997) The molecular biology of secreted enzyme production by fungi.Crit. Rev. Biotechnol. 17: 273–306.

    Article  CAS  Google Scholar 

  3. Hintz, W. E., I. Kalsner, E. Plawinski, S. M. Guo, and P. A. Lagosky (1995) Improved gene expression inAspergillus nidulans.Can. J. Bot. 73 Suppl. 1E-H: S876-S884.

    Article  CAS  Google Scholar 

  4. Gwynne, D. I. and M. Devchand (1992) Expression of foreign proteins in the genusAspergillus.Biotechnol 23: 203–214.

    CAS  Google Scholar 

  5. Varki, A. (1993) Biological roles of oligosaccharides: all of the theories are correct.Glycobiol. 3: 97–130.

    Article  CAS  Google Scholar 

  6. Goochee, C. F., M. J. Gramer, D. C. Anderson, J. E. Bahr, and J. R. Rasmussen (1991) The oligosaccharides of glycoproteins: bioprocess factors affecting the oligosaccaride structure and their effect on glycoprotein properties.Biotechnol. 9: 1347–1355.

    Article  CAS  Google Scholar 

  7. Kornfeld, R. and S. Kornfeld (1985) Assembly of asparagine-linked oligosaccharides.Ann. Rev. Biochem. 54: 631–664.

    Article  CAS  Google Scholar 

  8. Herscovics, A. (1999) Processing glycosidases ofSaccharomyces cerevisiae.Biochim. Biophys. Acta 1426: 275–285.

    CAS  Google Scholar 

  9. Henrissat, B. (1998) Enzymology of cell-wall degradation.Biochem. Soc. Trans. 26: 153–156.

    CAS  Google Scholar 

  10. Henrissat, B. (1991) A classification system of glycosyl hydrolases based on amino acid sequence similarity.Biochem. J. 280: 309–316.

    CAS  Google Scholar 

  11. Dean, N. (1999) Asparagine-linked glycosylation in the yeast Golgi.Biochim. Biophys. Acta 1426: 309–322.

    CAS  Google Scholar 

  12. Herscovics, A. and P. Orlean (1998) Glycoprotein biosynthesis in yeast.FASEB 7: 540–550.

    Google Scholar 

  13. Maras, M., X. Saelens, W. Laroy, K. Piens, M. Claeyssens, W. Fiers, and R. Contreras (1997)In vitro conversion of the carbohydrate moiety of fungal glycoproteins to mammalian-type oligosaccharides—evidence for N-acetylglucosaminyltransferase-I-accepting glycans fromTrichoderma reesei.Eur. J. Biochem. 249: 701–707.

    Article  CAS  Google Scholar 

  14. Chiba, Y., Y. Yamagata, S. Iijima, T. Nakajima, and L. Ichishima (1993) The carbohydrate moiety of the acid carboxypeptidase fromAspergillus satoi.Curr. Microbiol. 27: 281–288.

    Article  CAS  Google Scholar 

  15. Ohno, S. (1970)Evolution by Gene Duplication. Springer-Verlag, Berlin, Germany.

    Google Scholar 

  16. Li, W. H. (1997)Molecular Evolution. Sinauer Associates, Sunderland, Massechusetts, USA.

    Google Scholar 

  17. Doolittle, R. E. (1995) The multiplicity of domains in proteins.Ann. Rev. Biochem. 64: 287–314.

    Article  CAS  Google Scholar 

  18. Walsh, J. B. (1995) How often do duplicated genes evolve new functions.Genetics 139: 421–428.

    CAS  Google Scholar 

  19. Clark, A. G. (1994) Invasion and maintenance of a gene duplication.Proc. Natl. Acad. Sci. USA 91: 2950–2954.

    Article  CAS  Google Scholar 

  20. Ohta, T. (1994) Further examples of evolution by gene duplication revealed through DNA sequence comparisons.Genetics 138: 1331–1337.

    CAS  Google Scholar 

  21. Ohta, T. (1990) How gene families evolve.Theor. Pep. Biol. 37: 213–219.

    Article  CAS  Google Scholar 

  22. Ohta, T. (1989) Role of gene duplication in evolution.Genome 31: 304–310.

    CAS  Google Scholar 

  23. Hughes, A. L. (1994) The evolution of functionally novel proteins after gene duplication.Proc. R. Soc. London B 256: 119–124.

    Article  CAS  Google Scholar 

  24. Huynen, M. A. and E. van Nimwegen (1998) The frequency distribution of gene family sizes in complete genomes.Mol. Biol. Evol. 15: 583–589.

    CAS  Google Scholar 

  25. Wagner, A. (1994) Evolution of gene networks by gene duplications: a mathematical model and its implications on genome organization.Proc. Natl. Acad. Sci. USA 91: 4387–4391.

    Article  CAS  Google Scholar 

  26. Wolfe, K. H. and D. C. Shields (1997) Molecular evidence for an ancient duplication of the entire yeast genome.Nature 387: 708–713.

    Article  CAS  Google Scholar 

  27. Hughes, M. K. and A. L. Hughes (1993) Evolution of duplicate genes in a tetraploid animal.Xenopus laevis. Mol. Biol. Evol. 10: 1360–1369.

    CAS  Google Scholar 

  28. Tautz, D. (1992) Redundancies, development and the flow of information.BioEssays 14: 263–266.

    Article  CAS  Google Scholar 

  29. Eades, C. J. and W. E. Hintz (2000) Characterization of the Class I α-mannosidase gene family in the filamentous fungusAspergillus nidulans, Gene, in press.

  30. Moremen, K. W., R. B. Trimble, and A. Herscovics (1994) Glycosidases of the asparagine-linked oligosaccharide processing pathway.Glycobiol. 4: 113–125.

    Article  CAS  Google Scholar 

  31. Nadeau, J. H. and D. Sankoff (1997) Comparable rates of gene loss and functional divergence after genome duplications early in vertebrate evolution.Genetics 147: 1259–1266.

    CAS  Google Scholar 

  32. Keller, N. P. and T. M. Hohn (1997) Metabolic pathway clusters in filamentous fungi.Fungal Gen. Biol. 21: 17–29.

    Article  CAS  Google Scholar 

  33. Daniel, P. F., B. Winchester, and C. D. Warren (1994) Mammalian α-mannosidases-multiple forms but a common purpose.Glycobiol. 4: 551–566.

    Article  CAS  Google Scholar 

  34. Eades, C. J., A. M. Gilbert, C. D. Goodman, and W. E. Hintz (1998) Identification and analysis of a Class 2 α-mannosidase fromAspergillus nidulans.Glycobiol. 8: 17–33.

    Article  CAS  Google Scholar 

  35. Inoue, T., T. Yoshida, and E. Ichishima (1995) Molecular cloning and nucleotide sequence of the 1,2-α-D-mannosidase gene,msdS, fromAspergillus satoi and expression of the gene in yeast cells.Biochim. Biophys. Acta 1253: 141–145.

    Google Scholar 

  36. Yoshida, T. and E. Ichishima (1995) Molecular cloning and nucleotide sequence of the genomic DNA for 1,2-alpha-D-mannosidase gene, msdC fromPenicillium citrinum.Biochim. Biophys. Acta 1263: 159–162.

    Google Scholar 

  37. Maras, M., N. Callewaert, K. Piens, M. Claeyssens, W. Martinet, S. Dewaele, H. Contreras, I. Dewerte, M. Penttila, and R. Contreras (2000) Molecular cloning and enzymatic characterization of aTrichoderma reesei 1,2,-α-D-mannosidase.J. Bacteriol. 77: 255–263.

    CAS  Google Scholar 

  38. Roberts, D. B., W. J. Mulvany, R. A. Dwek, and P. M. Rudd (1998) Mutant analysis reveals an alternative pathway for N-linked glycosylation inDrosophila melanogaster.Eur. J. Biochem. 253: 494–498.

    Article  CAS  Google Scholar 

  39. Kalsner, I., W. Hintz, L. S. Reid, and H. Schachter (1995) Insertion intoAspergillus nidulans of functional UDP-GlcNAc: α3-D-mannoside β-1,2-N-acetylglucosaminyltrans erase I, the enzyme catalyzing the first committed step from oligomannose to hybrid and complex type N-glycans.Glycoconj. J. 12: 360–370.

    Article  CAS  Google Scholar 

  40. Masuoka, J. and K. C. Hazen (1997) Cell wall protein mannosylation determinesCandida albicans cell surface hydrophobicity.Microbiology 143: 3015–3021.

    Article  CAS  Google Scholar 

  41. Basse, C. W., A. Fath, and T. Boller (1993) High affinity binding of a glycopeptide elicitor to tomato cells and microsomal membranes and displacement by specific glycan suppressors.J. Biol. Chem. 268: 14724–14731.

    CAS  Google Scholar 

  42. Basse, C. W., K. Bock, and T. Boller (1992) Elicitors and suppressors of the defense response in tomato cells—purification and characterization of glycopeptide elicitors and glycan suppressors generated by enzymatic cleavage of yeast invertase.J. Biol. Chem. 267: 10258–10265.

    CAS  Google Scholar 

  43. Bircher, U. and H. B. Hohl (1997) Surface glycoproteins associated with appressorium formation and adhesion inPhytophthora palmivora.Mycol. Res. 101: 769–75.

    Article  CAS  Google Scholar 

  44. Hollenstein, L., S. Balsiger, and H. R. Hohl (1995) The influence of IgG, proteases, and glycosidases on adhesion to and infection of soybean plants byPhytophthora megasperma f. sp.glycinea.Botanica Helvetica 105: 221–232.

    Google Scholar 

  45. Di Pietro, A. and M. I. G. Roncero (1996) Endopolygacturonase fromFusarium oxysporum f. sp.lycopersici: purification, characterization, and production during infection of tomato plants.Phytopathology 86: 1324–1330.

    Google Scholar 

  46. Dean, J. F. D. and J. D. Anderson (1991) Ethylene biosynthesis-inducing xylanase. Purification and physical characterization of the enzyme produced byTrichoderma viride.Plant Physiol. 95: 316–323.

    Article  CAS  Google Scholar 

  47. West, C. A. (1981) Fungal elicitors of the phytoalexin response in higher plants.Naturwissenschaften 68: 447–457.

    Article  CAS  Google Scholar 

  48. Huang, X. (1994) On global sequence alignments.Comput. Appl. Biosci. 10: 227–235.

    CAS  Google Scholar 

  49. Swofford, D. L. (1998) PAUP*. Phylogenetic analysis using parsimony (* and other methods). Sinauer, Sunderland, Mass.

    Google Scholar 

  50. Bause, E., E. Bieberich, A. Rolfs, C. Volker, and B. Schmidt (1993) Molecular cloning and primary structure of Man— mannosidase from human kidney.Eur. J. Biochem. 217: 535–540.

    Article  CAS  Google Scholar 

  51. Tremblay, L. O., N. Campbell Dyke, and A. Herscovics (1998) Molecular cloning, chromosomal mapping and tissuespecific expression of a novel human α-1,2-mannosidase gene involved in N-glycan maturation.Glycobiol. 8: 585–595.

    Article  CAS  Google Scholar 

  52. Lal, A., J. S. Schutzbach, W. T. Forsee, P. Neame, and K. W. Moremen (1994) Isolation and expression of murine and rabbit cDNAs encoding and α-1,2-mannosidase involved in the processing of asparagine-linked oligosaccharides.J. Biol. Chem. 269: 9872–9881.

    CAS  Google Scholar 

  53. Herscovics, A., J. Schneikert, A. Athanassiadis, and K. W. Moremen (1994) Isolation of a mouse Golgi mannosidase cDNA, member of a gene family conserved from yeast to mammals.J. Biol. Chem. 269: 9864–9871.

    CAS  Google Scholar 

  54. Bieberich, E., K. Treml, C. Volker, A. Rolfs, B. Kalz-Fuller, and E. Bause (1997) Man9-mannosidase from pig liver is a type-II membrane protein that resides in the endoplasmic reticulum—cDNA cloning and expression of the enzymes in COS 1 cells.Eur. J. Biochem. 246: 681–689.

    Article  CAS  Google Scholar 

  55. Kerscher, S., S. Albert, D. Wucherpfennig, M. Heisenberg, and S. Schneuwly (1995) Molecular and genetic analysis of theDrosophila mas-1 (mannosidase-1) gene which encodes a glycoprotein processing α-1,2-mannosidase.Dev. Biol. 168: 613–626.

    Article  CAS  Google Scholar 

  56. Kawar, Z., A. Herscovics, and D. L. Jarvis (1997) Isolation and characterization of an α-1,2-mannosidase cDNA from the lepidopteran insect cell line Sf9.Glycobiol. 7: 433–443.

    Article  CAS  Google Scholar 

  57. Camirand, A., A. Heysen, B. Grondin, and A. Herscovics (1991) Glycoprotein biosynthesis inSaccharomyces cerevisiae: isolation and characterization of the gene encoding a specific processing α-mannosidase.J. Biol. Chem. 266: 15120–15127.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William E. Hintz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eades, C.J., Hintz, W.E. Characterization of the α-mannosidase gene family in filamentous fungi: N-glycan remodelling for the development of eukaryotic expression systems. Biotechnol. Bioprocess Eng. 5, 227–233 (2000). https://doi.org/10.1007/BF02942178

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02942178

Keywords

Navigation