Skip to main content

Regulation of chloride secretion in mammalian colon

Abstract

A number of procedures or interventions which activate electrogenic ion transport in mammalian intestine are reviewed. Using in vitro models it is possible to demonstrate direct or indirect pathways to stimulate chloride secretion. Such activation, in vivo, would change the gut from a state of net water absorption to one of fluid secretion. The movement of water is driven by electrical and osmotic gradients set up as a consequence of opening regulated ion channels in epithelial cells. Secretagogues may govern epithelial intracellular second messenger pathways to regulate ion channel activity directly or by activation of membrane bound receptors on the surface of epithelial cells. In health or disease secretagogues may be derived from cells within the attendant lamina propria of the intestinal mucosa. Pharmacological techniques may be employed to determine which mediators contribute to indirect stimulation of electrogenic ion transport by activation of neurons or of immunocytes (mast cells or phagocytes). Dissection and reconstruction of models of intestinal hypersensitivity reactions show that neuro-immune networks which regulate intestinal ion transport appear to be complex, functionally integrated systems. Analysis of such interactions may identify cellular or humoral targets with which to examine novel diagnostic, preventative or therapeutic strategies with regard to intestinal diseases.

References

  1. Field, M., Rao, M. C., Chang, E. B. Intestinal electrolyte transport and diarrhoeal disease. New Eng. J. Med 1989: 321, 800–806.

    PubMed  CAS  Google Scholar 

  2. Welsh, M. J., Smith, P. L., Fromm, M., Frizzell, R. A. Crypts are the site of intestinal fluid and electrolyte secretion. Science 1982: 218, 1219–1221.

    PubMed  Article  CAS  Google Scholar 

  3. Riordan, J. R. The cystic fibrosis transmembrane conductance regulator. Ann. Rev. Physiol. 1993: 55, 609–630.

    Article  CAS  Google Scholar 

  4. Dawson, D. C. The molecular basis of gastrointestinal transport. Ann. Rev. Physiol. 1993: 55, 571–573.

    Article  Google Scholar 

  5. Barrett, K. E., Dharmsathaphorn, K. In Textbook of Secretory Diarrhoea, ed E. Lebenthal and M. Duffey, Raver. Press Ltd. New York 1990: 59–66.

  6. McRoberts, J. A., Beuerlein, G., Dharmsathaphorn, K. Cyclic AMP and calcium activated potassium transport in a human colonic epithelial cell line. J. Biol. Chem. 1985: 260, 1416314172.

    Google Scholar 

  7. Field, M., Graff, L.H., Laird, W.J., Smith, P. L. Heat stable enterotoxin of Escherichiacoli: in vitro effects on guanylate cyclase activity, cyclic GMP concentration and ion transport in small intestine. Proc. Natl. Acad. Sci. USA 1978: 75, 2800–2804.

    PubMed  Article  CAS  Google Scholar 

  8. Hughes, J. M., Murad, F., Chang, B. Guerrant, R. L. Role of cyclic GMP in the action of heatstable enterotoxin of Escherichia coli. Nature 1978: 271, 755–756.

    PubMed  Article  CAS  Google Scholar 

  9. Wiegand, R. C., Kato, J., Currie, M. G. Rat guanylin cDNA: characterisation of the precursor of an endogenous activator of intestinal guanylate cyclase Biochem. Biophys. Res. Commun. 1992: 185, 812–817.

    Article  CAS  Google Scholar 

  10. Bienenstock, J. Cellular communication networks - Implications for our understanding of gastrointestinal physiology. Ann. N.Y. Acad. Sci. 1992: 664, 1–9.

    PubMed  Article  CAS  Google Scholar 

  11. McKay, D. M., Perdue, M. H. Intestinal epithelial function: the case for immunophysiological regulation. Cells and mediators. Dig. Dis. Sci. 1993: 38, 1377–1387.

    PubMed  Article  CAS  Google Scholar 

  12. McKay, D.M., Perdue, M.H. Intestinal epithelial function: the case for immunophysiological regulation. Implications for disease. Dig. Dis. Sci. 1993: 38, 1735–1745.

    PubMed  Article  CAS  Google Scholar 

  13. Cooke, H. J. Role of the ‘little brain’ in the gut in water and electrolyte homeostasis. FASEB. J. 1989: 3, 127–139.

    PubMed  CAS  Google Scholar 

  14. Goyal, R. K., Crist, J. R. Neurology of the gut in gastrointestinal disease - pathophysiology, diagnosis, management. Ed. Sleisenger, M. H., Fordtran, J. S., W. B. Saunders, Philadelphia, 1989.

  15. Cooke, H. J., Carey, H. V. Neural regulaltion of intestinal ion transport, in Textbook of secretory diarrhoea, ed E. Lebenthal, M. Duffey, Raven Press Ltd. New York 1990: 1–13.

  16. Baird, A. W., Cuthbert, A. W. Neuronal involvement in type I hypersensitivity reactions in gut epithelia. Br. J. Pharmacol. 1987: 92, 647–655.

    PubMed  CAS  Google Scholar 

  17. O’Malley, K. E., O’Donnell, E., Baird, A. W. Neuronal involvement in cholinergic regulation of ion transport in rat colon. Br. J. Pharmacol. 1991: 104, 157P.

    Google Scholar 

  18. Cuthbert, A. W., McLaughlin, P., Coombs, R. R. A. Immediate hypersensitivity reaction to ß lactoglobulin in the epithelium lining the colon of guinea pigs fed cows’ milk. Int. Arch. Allergy Appl. Immunol. 1983: 72, 34–40.

    PubMed  CAS  Google Scholar 

  19. Baird, A. W., Coombs, R. R. A., McLaughlan, P., Cuthbert, A. W. Immediate hypersensitivity reactions to cow milk proteins in isolated epithelium from ileum of milk drinking guinea pigs. Int. Arch. Allergy Appl. Immunol. 1984: 75, 255–263.

    PubMed  CAS  Google Scholar 

  20. Dale, H. H. The anaphylactic reaction of plain muscle in the guinea pig. J. Pharm. Exp. Ther. 1913: 4, 167–223.

    CAS  Google Scholar 

  21. Castro, G. A. Immunological regulation of epithelial function. Am. J. Physiol. 1982: 243, G321-G329.

    PubMed  CAS  Google Scholar 

  22. Cuthbert, A. W., Baird, A. W. Multiple mediators of type I hypersensitivity reactions in epithelia. Am. J. Physiol. 1987: 252, G443.

    PubMed  CAS  Google Scholar 

  23. Baird, A. W., Cuthbert A. W. Changed sensitivity to antigen in a gut epithelium treated with bile salts. Br. J. Pharmacol. 1985: 84, 653–657.

    PubMed  CAS  Google Scholar 

  24. Crowe, S. E., Perdue, M. H. Gastrointestinal food hypersensitivity: Basic mechanisms of pathophysiology. Gastroenterology 1992: 103, 1075–1095.

    PubMed  CAS  Google Scholar 

  25. Baird, A. W., O’Malley, K. E. Epithelial ion transport - Possible contribution to parasite expulsion. Parasitology Today 1993: 9, 141–143.

    PubMed  Article  CAS  Google Scholar 

  26. Baird, A. W., Cuthbert, A. W., MacVinish, L. J. Type I hypersensitivity reactions in reconstructed tissues using syngeneic cell types. Br. J. Pharmacol. 1987: 91, 857–870.

    PubMed  CAS  Google Scholar 

  27. Blalock, J. E. A molecular basis for bidirectional communication between the immune and the neuroendocrine system. Physiol. Rev, 1989: 69, 1–32.

    PubMed  CAS  Google Scholar 

  28. O’Malley, K. E., Sloan, T., Joyce, P., Baird, A. W. Type I hypersensitivity reactions in intestinal mucosae from rats infected with Fasciola hepatica. Parasite Immunol. 1993: 15, 449–453.

    PubMed  Article  CAS  Google Scholar 

  29. Cooke, H. J. Neuro-modulation of ion secretion by inflammatory mediators. Ann. N.Y. Acad. Sci. 1992: 664, 346–352.

    PubMed  Article  CAS  Google Scholar 

  30. Harari, Y., Castro, G. A. Stimulation of parasite-induced gut hypersensitivity: implications for vaccination. Immunology 1989: 66, 302–307.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Conway Review Lecture 1993

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Baird, A.W. Regulation of chloride secretion in mammalian colon. I.J.M.S. 163, 277–281 (1994). https://doi.org/10.1007/BF02942126

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02942126

Keywords

  • Lamina Propria
  • Systemic Mastocytosis
  • Chloride Secretion
  • Mast Cell Hyperplasia
  • Cellular Communication Network