Biodegradation of mixed wastes in continuously operated cyclic reactors

  • Kung-Wei Wang
  • Dimitrios M. Tsangaris
  • Basil C. Baltzis
  • Gordon A. Lewandowski
Session 5 Environmental Biotechnology


The problem of simultaneous biodegradation of two dissimilar substrates in a continuously operated cyclic reactor was studied both at the theoretical and experimental levels using a simple model system. The system involved media containing mixtures of glucose and phenol as carbon sources. A pure culture ofPseudomonas putida (ATCC 17514) was employed. Independent kinetic experiments have revealed that glucose and phenol are involved in a crossinhibitory uncompetitive kinetic interaction. The dynamics of a cyclically operated reactor were analyzed using the principles of bifurcation theory for forced systems. Experimental results have confirmed the theoretical predictions. Implications of the results for the design of waste-treating facilities are discussed.

Index Entries

Biodegradation cyclic bioreactors bioreactor dynamics mixed wastes glucose/phenol removal 


  1. 1.
    Irvine, R. L. and Busch, A. W. (1979),J. Water Pollut. Control Fed. 51, 235–243.Google Scholar
  2. 2.
    Irvine, R. L. and Richter, R. O. (1978),J. Environ. Eng. Div. ASCE 104, 503–514.Google Scholar
  3. 3.
    Dikshitulu, S., Baltzis, B. C., Lewandowski, G. A., and Pavlou, S. (1993),Biotechnol. Bioeng. 42, 643–656.CrossRefGoogle Scholar
  4. 4.
    Wang, J.-H., Baltzis, B. C., and Lewandowski, G. A. (1995),Biotechnol. Bioeng. 46, 159–171.CrossRefGoogle Scholar
  5. 5.
    Lewandowski, G. A. and Baltzis, B. C. (1992),Chem. Eng. Sci. 47, 2389–2394.CrossRefGoogle Scholar
  6. 6.
    Lenas, P., Baltzis, B. C., Lewandowski, G. A., and Ko, Y.-F. (1994),Chem. Eng. Sci. 49, 4547–4561.CrossRefGoogle Scholar
  7. 7.
    Rozich, A. F. and Colvin, R. J. (1986),Biotechnol. Bioeng. 28, 965–971.CrossRefGoogle Scholar
  8. 8.
    Papanastasiou, A. C. and Maier, W. J. (1982),Biotechnol. Bioeng. 24, 2001–2011.CrossRefGoogle Scholar
  9. 9.
    Schmidt, S. K., Scow, K. M., and Alexander, M. (1987),Appl. Environ. Microbiol. 53, 2617–2623.Google Scholar
  10. 10.
    Hess, T. F., Schmidt, S. K., Silverstein, J., and Howe, B. (1990),Appl. Environ. Microbiol. 56, 1551–1558.Google Scholar
  11. 11.
    Hess, T. F., Silverstein, J., and Schmidt, S. K. (1993),Water Environ. Res. 65, 73–81.Google Scholar
  12. 12.
    Andrews, J. F. (1968),Biotechnol. Bioeng. 10, 707–723.CrossRefGoogle Scholar
  13. 13.
    Pavlou, S., Kevrekidis, I. G., and Lyberatos, G. (1990),Biotechnol. Bioeng. 35, 224–232.CrossRefGoogle Scholar
  14. 14.
    Pavlou, S. and Kevrekidis, I. G. (1992),Math. Biosci. 108, 1–55.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1996

Authors and Affiliations

  • Kung-Wei Wang
    • 1
  • Dimitrios M. Tsangaris
    • 1
  • Basil C. Baltzis
    • 1
  • Gordon A. Lewandowski
    • 1
  1. 1.Department of Chemical Engineering, Chemistry, and Environmental ScienceNew Jersey Institute of TechnologyNewark

Personalised recommendations