Skip to main content
Log in

Modeling cassava starch saccharification with amyloglucosidase

  • Session 3 Bioprocessing Research
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A solution of α-amylase liquefied cassava starch, 30% (w/v), was saccharified with amyloglucosidase at 45°C, pH 4.5, in a batch reactor in the presence and absence of added glucose. Reactor conversion results were modeled with a multisubstrate model that considers intermediate dextrins of starch hydrolysis, reversibility of some reactions, substrate and product inhibition, and competition among dextrins and isomaltose formation. Kinetic parameters were obtained from initial velocity saccharification tests at different starch concentrations and from the literature. The model can represent well the saccharification of cassava starch even in the presence of a great excess of glucose (100 g/L), added to test its capability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

CA :

liquefied starch concentration, g/L

CAo :

initial starch concentration, 300 g/L

Cg :

glucose concentration, g/L

Cga :

concentration of added glucose, g/L

Cgi :

glucose concentration at the start of saccharification, g/L

E:

enzyme concentration, mL of enzyme stock solution/L of substrate solution

f:

ratio of molecular weights for the anhydroglucose unit in starch and glucose, f = 162/180 = 0.9

G:

glucose molar concentration, mol/L

G2 :

maltose molar concentration, mol/L

G3 :

maltotriose molar concentration, mol/L

G4 :

susceptible oligosaccharides molar concentration, mol/L

G6 :

resistant oligosaccharides molar concentration, mol/L

GI :

isomaltose molar concentration, mol/L

Geq, G2eq, G3eq, Gleq :

quilibrium molar concentration for glucose, maltose, maltotriose, and isomaltose, respectively, mol/L

kcat :

reaction rate constant related to product formation, ol/(h·mL of enzyme)

Keq2, Keq3, KeqI :

equilibrium constants for maltose (mol/L), maltotriose (mol/L), and isomaltose (L/mol), respectively

Ki :

product (glucose) inhibition constant, mol/L

Km2, Km3, Km4, Km6 :

Michaelis-Menten constants for maltose, maltotriose, susceptible oligosaccharides, and resistant oligosaccharides, respectively, mol /L

KS :

substrate inhibition constant, mol/L

MG :

molecular weight of glucose, 180 g/gmol

n:

average degree of polymerization, dimensionless

r2, r3, r4, r6, r1 :

rate of reaction for maltose, maltotriose, susceptible oligosaccharides, resistant oligosaccharides, and isomaltose, respectively, mol/(L·h)

t:

reaction time, h

V:

initial rate of glucose production, g/(L·h)

VIM :

second-order rate constant for isomaltose, L2/(mol·h·mL of enzyme)

Vm2, Vm3, Vm4, Vm6 :

maximum velocity constants associated with the reaction rate of maltose, maltotriose, susceptible oligosaccharides, and resistant oligosaccharides, respectively, mol/(h·mL of enzyme)

XA :

conversion of liquefied starch to glucose, %

α:

parameter in Eq. (22), a = (CAo/kcat) (1-Km/K+CAo/KS), mL of enzyme·h/L

β:

parameter in Eq. (22), β = (Km/kcat) (1 + Cgi/Ki + CAo/Ki), mL of enzyme·h/L

γ:

parameter in Eq. (22), γ = C 2Ao /(2K S kcat), ml of enzymeh/L

τb :

normalized reaction time, τb = E·t, mL of enzyme·h/L

References

  1. Zanin, G. M. (1989), Sacarificação de amido em reator de leito fluidizado com enzima amiloglicosidase imobilizada. Ph. D. Thesis, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas, Campinas-SP, Brazil.

    Google Scholar 

  2. Zanin, G. M. and de Moraes, F. F. (1984), Proceedings of XII Encontro sobre Escoamento em Meios Porosos, Maringá-PR, Brazil,October,I, 267–285.

  3. Zanin, G. M., Neitzel, I., and de Moraes, F. F. (1993),Appl. Biochem. Biotechnol. 39/40, 477–489.

    Article  Google Scholar 

  4. Zanin, G. M., Kambara, L. M., Calsavara, L. P. V., and de Moraes, F. F. (1994),Appl. Biochem. Biotechnol. 45/46, 627–639.

    Article  Google Scholar 

  5. Zanin, G. M. and de Moraes, F. F. (1995),Appl. Biochem. Biotechnol. 51/52, 253–262.

    Article  CAS  Google Scholar 

  6. Zanin, G. M. and de Moraes, F. F. (1988),Revista Microbiologia 20, 367–371.

    Google Scholar 

  7. Lee, D. D., Lee, G. K., Reilly, P. J., and Lee, Y. Y. (1980),Biotechnol. Bioeng. 22, 1–17.

    Article  CAS  Google Scholar 

  8. Marc, A., Duc, G., and Engasser, J. M. (1984),Proceedings of Third European Congress on Biotechnology, vol. II, Springer-Verlag, pp. 103–108.

  9. Marc, A., Engasser, J. M., Moll, M., and Flayeux, R. A. (1983),Biotechnol. Bioeng. 25, 481–496.

    Article  CAS  Google Scholar 

  10. Beschkov, V., Marc, A., and Engasser, J. M. (1984),Biotechnol. Bioeng. 26, 22–26.

    Article  CAS  Google Scholar 

  11. Marc, A. (1985), Cinétique et modelisation de réacteurs á glucoamylase soluble et immobilisée. Docteur d’Etat thesis, Institute Polytechnique de Lorraine, France.

    Google Scholar 

  12. Reilly, P. J. (1985), inStarch Conversion Technology, Van Beynum, G. M. A. and Roels, J. A., eds., Marcel Dekker, New York, pp. 101–114.

    Google Scholar 

  13. Cooper, G. R. and McDaniel, V. (1970),Clin. Chem. 6, 159–170.

    CAS  Google Scholar 

  14. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. J. (1975),Biol. Chem. 193, 265–275.

    Google Scholar 

  15. Van Den Heuvel, J. C., and Beeftink, H. H. (1988),Biotechnol. Bioeng. 31, 718–724.

    Article  Google Scholar 

  16. Segel, I. H. (1975),Enzyme Kinetics-Behavior and Analysis of Rapid Equilibrium and Steady-State Enzyme Systems, John Wiley, New York, pp. 210,211.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zanin, G.M., De Moraes, F.F. Modeling cassava starch saccharification with amyloglucosidase. Appl Biochem Biotechnol 57, 617–625 (1996). https://doi.org/10.1007/BF02941742

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02941742

Index Entries

Navigation