Skip to main content
Log in

Sorptive recovery of dilute ethanol from distillation column bottoms stream

  • Session 1 Thermal, Chemical, and Biological Processing
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Modern ethanol distillation processes are designed to ensure removal of all ethanol from the column bottoms, i.e., to levels <100 ppm ethanol, and utilize substantial stripping steam to achieve this result. An alternate approach using sorption was attempted as a means to reduce energy requirements in the stripping section, and thereby reduce cost. Adsorbents tested for use in such an application showed that carbonaceous supports, in particular Ambersorb XEN 572, gave alcohol-free water as effluent when a 1% (w/w) starting ethanol concentration was passed downflow at 1 bed vol/h over a fixed-bed adsorber at 70°C. Regeneration was readily achieved at 70–90°C using hot air, vacuum, superheated steam, or hot water to strip the ethanol from the column, and yielded ethanol streams containing a maximum of 5.9% alcohol, with average concentrations of 2.5–3.5% depending on the regeneration method used. These experimentally determined operating conditions combined with distillation energy calculations have enabled development of a process concept for sorptive concentration of dilute ethanol which is more energy efficient than distillation alone. The combination of existing distillation and corn grit drying technologies, with sorptive recovery of dilute ethanol (from the column bottoms) shows promise of recovering a fuel grade, 99.4% ethanol product from a 4.5% ethanol broth with an energy requirement of 23,100 BTU/gal. The potential energy saving of 3600 BTU/gal over distillation alone corresponds to 1.8¢/gal, and provides motivation for further examination of this approach in reducing costs of ethanol production from biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Cp :

specific heat capacity of water

D:

mass flow rate of overhead product

mc :

mass flow rate of cooling water in overhead condenser

ms :

mass flow rate of steam in reboiler

RD :

R, reflux ratio for distillation column

RDmin :

Rmin, minimum reflux ratio

l:

latent heat of vaporization of liquid in bottoms

ls :

latent heat of vaporization of steam

ΔT:

rise in temperature of cooling water in overhead condenser

References

  1. Ladisch, M. R. and Westgate, P. J. (1994),Improvements in Separation and Recovery Technology For Lower Biofuel Costs, Proceedings of Corn Utilization Conference V Corn Growers Association, St. Louis, MO.

  2. Ladisch, M. R. and Schwandt, R. (1992), inTechnology for Expanding the Biofuels Industry. Proceedings of workshop sponsored by DOE, USDA and Renewable Fuels Association in Chicago, p. II–4.

  3. David, M. L., Hamnzaker, G. S., Buzenberg, R. J., and Wagner, J. P. (1978), inGasohol Economic Feasibility Study, Development Planning and Research Assoc., Inc., Manhattan, KS.

    Google Scholar 

  4. Ghose, T. K. and Tyzgi, R. D. (1979),Biotechnol. Bioeng. 21, 1387.

    Article  CAS  Google Scholar 

  5. Hohmann, N. and Rendleman, C. M. (1993), inEmerging Technologies in Ethanol Production, USDA Agriculture Information Bulletin No. 663, p. 1.

  6. Ladisch, M. R. and Dyck, K. (1979).Science 205, 898.

    Article  CAS  Google Scholar 

  7. Phillips, J. A. and Humphrey, A. E. (1983), inWood and Agricultural Residues: Research in Use for Feed, Fuels, and Chemicals, Soltes, E. J., ed., Academic, New York, p. 503.

    Google Scholar 

  8. Robertson, G. H., Doyle, L. R., and Pavlath, A. E. (1983),Biotechnol. Bioeng. 25, 3133.

    Article  CAS  Google Scholar 

  9. Crawshaw, J. P. and Hills, J. H. (1990),Ind. Eng. Chem. Res.29, 307.

    Article  CAS  Google Scholar 

  10. Voloch, M., Ladisch, M. R., Bienkowski, P., and Tsao, G. T. (1984),Cereal Polysaccharides in Technology and Nutrition, Rasper, V. F. ed., American Association of Cereal Chemists, St. Paul, MN, p. 103.

    Google Scholar 

  11. Hong, J., Voloch, M., Ladisch, M. R., and Tsao, G. T. (1982),Biotechnol. Bioeng. 24, 725.

    Article  CAS  Google Scholar 

  12. Ladisch, M. R., Voloch, M., Hong, J., Bienkowski, P., and Tsao, G. T. (1984),Ind. Eng. Chem. Process Design Dev. 23, 437.

    Article  CAS  Google Scholar 

  13. Hills, J. H. and Pirzada, I. M. (1989),Chem. Eng. Res. Des. 67, 442.

    CAS  Google Scholar 

  14. Hassaballah, A. A. and Hills, J. H. (1990),Biotechnol. Bioeng. 35, 598.

    Article  CAS  Google Scholar 

  15. Bienkowski, P. R., Barthé, A., Voloch, M., Neuman, R. N., and Ladisch, M. R. (1986),Biotechnol. Bioeng. 28, 960.

    Article  CAS  Google Scholar 

  16. Neuman, R., Voloch, M., Bienkowski, P., and Ladisch, M. R. (1986),Ind. Eng. Chem. Fundam. 25, 422.

    Article  CAS  Google Scholar 

  17. Walsh, P. K., Liu, C. P., Findley, M. E., Liapis, A. I., and Siehr, D. J. (1983),Biotechnol. Bioeng. Symp. 13, 629.

    CAS  Google Scholar 

  18. Lee, J. Y., Westgate, P. J., and Ladisch, M. R. (1991),AIChE J. 37, 1187.

    Article  CAS  Google Scholar 

  19. Westgate, P. J. and Ladisch, M. R. (1993),Ind. Eng. Chem. Res. 32, 1676.

    Article  CAS  Google Scholar 

  20. Goetz, R. J. (1995), In Forefront, Goetz, R., ed. AGAD, Purdue University, West Lafayette, IN.

    Google Scholar 

  21. Katzen, R., Diebold, V. B., and Moon, G. B. (1969), US Patent 3, 445, 345.

  22. Katzen, R. and Diebold, V. B. (1976), US Patent 3, 990, 952.

  23. Lynd, L. R. and Grethlein, H. E. (1986)AIChE J. 32(8), 1347.

    Article  CAS  Google Scholar 

  24. Carey, J. S. and Lewis, W. K. (1932),J. Ind. Eng. Chem. (24), 882.

    Google Scholar 

  25. Hong, J., Ladisch, M. R., and Tsao, G. T. (1981),J. Chem. Eng. Data 26(3), 305–307.

    Article  CAS  Google Scholar 

  26. Dalager, P. (1969),J. Chem. Eng. Data 14(3), 298–301.

    Article  CAS  Google Scholar 

  27. Altsheler, W. B., Unger, E. D., and Kolachov, P. (1951),J. Ind. Eng. Chem. 43(11), 2559–2564.

    Article  CAS  Google Scholar 

  28. McCabe, W. L., Smith, J. C., and Harriott, P. (1985), inUnit Operations of Chemical Engineering. McGraw-Hill, New York, p. 489.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gulati, M., Westgate, P.J., Brewer, M. et al. Sorptive recovery of dilute ethanol from distillation column bottoms stream. Appl Biochem Biotechnol 57, 103–119 (1996). https://doi.org/10.1007/BF02941692

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02941692

Index Entries

Navigation