Skip to main content
Log in

Rational torsion of J0(N) for hyperelliptic modular curves and families of Jacobians of genus 2 and genus 3 curves with a rational point of order 5,7 or 10

  • Published:
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg Aims and scope Submit manuscript

Abstract

We describe a way of constructing Jacobians of hyperelliptic curves of genus g ≥ 2, defined over a number field, whose Jacobians have a rational point of order of some (well chosen) integer l ≥ g + 1; the method is based on a polynomial identity. Using this approach we construct new families of genus 2 curves defined over — which contain the modular curves X0(31) (and X0(22) as a by-product) and X0(29), the Jacobians of which have a rational point of order 5 and 7 respectively. We also construct a new family of hyperelliptic genus 3 curves defined over —, which contains the modular curve X0(41), the Jacobians of which have a rational point of order 10. Finally we show that all hyperelliptic modular curves X0(N) with N a prime number fit into the described strategy, except for N = 37 in which case we give another explanation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Boxall andD. Grant, Examples of torsion points on genus two curves.Trans. Amer. Math. Soc.352 (2000), 4533–4555.

    Article  MATH  MathSciNet  Google Scholar 

  2. J. Boxall, D. Grant andF. Leprévost, 5-torsion points on curves of genus 2.J. bond. Math. Soc., II Ser.64 (1) (2001), 29–43.

    MATH  Google Scholar 

  3. E. V. Flynn, Large rational torsion on abelian varieties.J. Number Theory36 (3) (1990),257–265.

    Article  MATH  MathSciNet  Google Scholar 

  4. —, Sequences of rational torsions on abelian varieties.Invent. Math. 106 (2) (1990, 433–442.

    MathSciNet  Google Scholar 

  5. J. Gonzàlez Rovira, Equations of hyperelliptic modular curves.Ann. Inst. Fourier, Grenoble41 (4) (1991), 779–795.

    MATH  MathSciNet  Google Scholar 

  6. T. Hibino andN. Murabayashi, Modular equations of hyperellipticX0(N) and an application.Acta Arith.82 (3) (1997), 279–291.

    MATH  MathSciNet  Google Scholar 

  7. E. W. Howe, F. Leprévost andB. Poonen, Large torsion subgroups of split Jaco bians of curves of genus two or three.Forum Math.12 (3) (2000), 315–364.

    Article  MATH  MathSciNet  Google Scholar 

  8. J. Igusa, Arithmetic variety of moduli for genus two.Ann. Math.72 (2) (1960), 612–649.

    Article  MathSciNet  Google Scholar 

  9. Kant: http://www.math.tu-berlin.de/-kant

  10. J. Lehner andM. Newman, Weierstraβ points of Γ0(n).Ann. Math. 79 (2) (1964), 360–368.

    Article  MathSciNet  Google Scholar 

  11. F. Leprévost, Familles de courbes des genre 2 munies d’une classe de diviseurs rationnels d’ordre 13.C. R. Acad. Sci., Paris, Sér. I,313 (7) (1991), 451–454.

    MATH  Google Scholar 

  12. —, Familles de courbes de genre 2 munies d’une classe de diviseurs rationnels d’ordre 15, 17, 19 ou 21.C. R. Acad. Sci., Paris, Sér. I,313 (11) (1991), 771–774.

    MATH  Google Scholar 

  13. —, Torsion sur des familles de courbes de genreg. Manuscr. Math. 75 (3) (1992), 303–326.

    Article  MATH  Google Scholar 

  14. —, Courbes modulaires et 11-rang de corps quadratiques.Exp. Math. 2 (2) (1993), 137–146.

    MATH  Google Scholar 

  15. F. Leprévost, Famille de courbes hyperelliptiques de genreg munies d’une classe de diviseurs rationnels d’ordre 2g+ 4g + 1. In: S. David (ed.):Séminaire de théorie des nombres, Paris. Birkhäuser, 1991-92.Prog. Math. 116 (1994), 107–119.

  16. —, Jacobiennes de certaines courbes de genre 2: torsion et simplicité.J. Théor. Nombres Bordx. 7 (1) (1995), 283–306.

    MATH  Google Scholar 

  17. —, Sur une conjecture sur les points de torsion rationnels des jacobiennes de courbes.J. Reine Angew. Math. 473 (1996), 59–68.

    MATH  MathSciNet  Google Scholar 

  18. —, Sur certains sous-groupes de torsion de jacobiennes de courbes hyperelliptiques de genreg ≥ 1.Manuscr. Math. 92 (1) (1997), 47–63.

    Article  MATH  Google Scholar 

  19. Magma: http: //magma.maths.usyd. edu. au

  20. Maple: http://www.maplesoft.com

  21. L. Merel, Bornes pour la torsion des courbes elliptiques sur les corps de nombres.Invent. Math.124 (1-3) (1996), 437–449.

    Article  MATH  MathSciNet  Google Scholar 

  22. H. Ogawa, Curves of genus 2 with a rational torsion divisor of order 23.Proc. Japan Acad.70, Ser. A. (1994), 295–298.

    Article  MATH  MathSciNet  Google Scholar 

  23. A. P. Ogg, Rational points on certain elliptic modular curves.(Analytic Number Theory) Proc. Symp. Pure Math.24 (1973), 221–231.

    MathSciNet  Google Scholar 

  24. —, Hyperelliptic modular curves.Bull. Soc. Math. France 102 (1974), 449–462.

    MATH  MathSciNet  Google Scholar 

  25. M. Stoll, Two simple 2-dimensional abelian varieties defined over Q with Mordell- Weill rank at least 19.C. R. Acad. Sci. Paris, Sèr. I,321 (1995), 1341–1344.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to F. Leprévost, M. Pohst or A. Schöpp.

Additional information

R. Berndt

The authors thank the FNR (project FNR/04/MA6/11) for their support.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leprévost, F., Pohst, M. & Schöpp, A. Rational torsion of J0(N) for hyperelliptic modular curves and families of Jacobians of genus 2 and genus 3 curves with a rational point of order 5,7 or 10. Abh.Math.Semin.Univ.Hambg. 74, 193–203 (2004). https://doi.org/10.1007/BF02941535

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02941535

2000 Mathematics Subject Classification

Key words and phrases

Navigation