Skip to main content

Lie superbialgebras and poisson-lie supergroups

This is a preview of subscription content, access via your institution.

References

  1. N. Andruskiewitsch, F. Levstein and A. Tiraboschi, Lie Bialgebras with Triangular Decomposition. Preprint ICTP IC/92/117.

  2. V.G. Drinfeld, Hamiltonian Structures on Lie Groups, Lie Bialgebras and the Geometric Meaning of the Classical Yang-Baxter Equations. Soviet Math. Dokl.27 (1983), 68–71.

    MathSciNet  Google Scholar 

  3. V.G. Drinfeld, On Constant, Quasi-classical Solutions of the Quantum Yang-Baxter Equation. Soviet Math. Dokl.28 (1983), 667–671.

    Google Scholar 

  4. V.G. Drinfeld, Quantum Groups. Proc. of the ICM, Berkeley 1986, 798–820.

    Google Scholar 

  5. V.G. Drinfeld, Quasi-Hopf Algebras. Leningrad Math. J.1 no.6 (1990), 1419–1457.

    MathSciNet  Google Scholar 

  6. R. Floreanini, D. Leites andM. Vinet, On the Defining Relations of Quantum Superalgebras. Lett. Math. Phys.23 (1991), 127–131.

    MATH  Article  MathSciNet  Google Scholar 

  7. S. Gutt, An Explicit *-product on the Cotagent Bundle of a Lie Group. Lett. Math. Phys.7 no.4 (1983), 249–258.

    MATH  Article  MathSciNet  Google Scholar 

  8. D.I. Gurevich, Algebraic Aspects of the Quantum Yang-Baxter Equation. Alge- bra Anal.2 no.4 (1990), 119–148. (In russian)

    MATH  MathSciNet  Google Scholar 

  9. B. Kostant, Graded Manifolds, Graded Lie Theory, and Prequantization. Lect. Notes Math.570 (1975), 177–306.

    Article  MathSciNet  Google Scholar 

  10. S.M. Khoroshkin and V.N. Tolstoy, The Cartan-Weyl Basis and the Universal R-matrix for Quantum Kac-Moody Algebras and Superalgebras. (Preprint)

  11. D. Leites, Introduction to the Theory of Supermanifolds. Uspekhi Mat. Nauk35 (1980), 3–57.

    MATH  MathSciNet  Google Scholar 

  12. D. Leites, Cohomologies of Lie Superalgebras. Funct. An. Appl.9 (1975), 340–341.

    MATH  Article  MathSciNet  Google Scholar 

  13. Y.I. Manin, Quantum Groups and Non-commutative Geometry. Preprint Mon- treal University CRM-1561.

  14. G.I. Olshanski, Quantized Universal Enveloping Algebra of Type Q and a Super-Extension of the Hecke Algebra. Lett. Math. Phys.24 (1992), 93–102.

    MATH  Article  MathSciNet  Google Scholar 

  15. E. Sklyanin, L.A. Takhtajan andL. Fadeev, Teor. Matern. Fyz.40 (1979), 194–220.

    Google Scholar 

  16. L.A. Takhtajan, Introduction to Quantum Groups. In: Lect. Notes in Phys.370, Springer-Verlag 1990, 3–28.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Andruskiewitsch.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Andruskiewitsch, N. Lie superbialgebras and poisson-lie supergroups. Abh.Math.Semin.Univ.Hambg. 63, 147–163 (1993). https://doi.org/10.1007/BF02941339

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02941339

Keywords

  • Hopf Algebra
  • Poisson Bracket
  • Super Version
  • Hopf Superalgebra
  • Super Vector Space